• Title/Summary/Keyword: large steel pipe

Search Result 138, Processing Time 0.022 seconds

Drivability of Offshore Pile Foundation at Ieodo Ocean Research Station (이어도 해양과학기지 말뚝기초의 항타 관입성 연구)

  • Shim, Jae-Seol;Yoon, Gil-Lim;Lee, Seung-Jun
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.373-384
    • /
    • 2003
  • When pile foundation is constructed by dynamic method, it is desirable to perform monitoring of drivability with pile penetration. Dynamic pile monitoring yields information regarding driving hammer, cushion, pile and soil behaviour that can be used to confirm the assumptions of wave equation analysis. In this study, dynamic monitoring of the steel pipe pile was performed with Pile Driving Analyser (PDA). The PDA utilizes the wave propagation theory to compute numerous variables which describe the conditions of the hammer-pile-soil system in real-time and following each hammer impact. This approach allows immediate field verification of hammer performance, driving efficiency, and estimation of pile bearing capacity. A series of PDA test were performed at the Ieodo Ocean Research Station (IORS) located in southeast of Marado, a southernmost small island south of Jeju Island. The drilling core sediments of Ieodo subsoil are composed of mud and sand, showing lamination and wavy or lenticular bedding, which were often bioturbated. This paper summarizes the results of PDA tests which were applied in measurement and estimation of large diameter open ended steel pipe pile driven by steam hammer, Vulcan-560 and MRBS-4600, at the marine sediments.

Multiple Regression Analysis for Piercing Punch Profile Optimization to Prevent Tearing During Tee Pipe Burring (다중 회귀 분석을 활용한 Tee-Pipe 버링 공정에서 찢어짐 방지를 위한 피어싱 펀치 형상 최적 설계)

  • Lee, Y.S.;Kim, J.Y.;Kang, J.S.;Hong, S.
    • Transactions of Materials Processing
    • /
    • v.26 no.5
    • /
    • pp.271-276
    • /
    • 2017
  • A tee is the most common pipefitting used to combine or divide fluid flow. Tees can connect pipes of different diameters or change the direction of a pipe run. To manufacture tee type of stainless steel pipe, combinations of punch piercing and burr forming have been widely used in the industry. However, such method is considerably time consuming with regard to performing empirical work necessary to attain process conditions to prevent upper end tearing of the tee product and meet target tee height. Numerous experiments have shown that the piercing profile is the main cause of defects mentioned above. Furthermore, the mold design is formed through trial and error according to pipe diameters and changes in requirements. Thus, the objective of this study was to perform piercing and burring process analysis via finite element analysis using DYNAFORM to resolve problems mentioned above. An optimization design method was used to determine the piercing punch profile. Three radii of the piercing punch (i.e., large, small, and joined radii) were selected as design variables to minimize thinning of a tee pipe. Based on results of correlation and multiple regression analyses, we developed a predictive approximation model to satisfy requirements for both thickness reduction and target height. The new piercing punch profile was then applied to actual tee forming using the developed prediction equation. Model results were found to be in good agreement with experimental results.

A Study on the Stress Distribution of Steel Water Pipes(I) - Characteristics of Residual Stress Distribution by PWHT - (상수도용 도복장강관의 용접 및 외부하중에 의한 응력 특성에 관한 연구(I) - 후열처리에 의한 용접부의 잔류응력 특성 -)

  • 윤석환;이승기;나석주;고명환
    • Journal of Welding and Joining
    • /
    • v.19 no.3
    • /
    • pp.285-291
    • /
    • 2001
  • Large steel water pipes are joined prevalently by the bell end method, and are welded both at inside and outside of lapped parts. In practice, welded joints of water pipes are very critical, because in most cases failure of pipes causing leakage occurs at the welded joint. Therefore some methods have been developed to ensure the soundness of welded joints of water pipes, like leakage tests and nondestructive tests (NDTs). But one of the major characteristics that affects the soundness of welded Joints is the stress distribution caused by welding and external forces. Some studies have been carried out on the residual stress of steel water popes, but complex stress distributions by welding and external forces are rarely studied. In this study, temperature and stress distributions in steel water pipes produced by welding are predicted by a three-dimensional finite element method(FEM). Also, stress values are measured from real steel water pipes by the hole-drilling methods, and compared with predicted ones. The influence of some typical post weld treatments on residual stress distribution was also investigated by residual stress measurements.

  • PDF

Stability Evaluation for a riverbed tunnel in the Han River at the Fault Zone Crossing (한강 단층대를 통과하는 하저터널의 안정성 확보에 관한 연구)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • When building tunnels beneath riverbeds where very large quantities of groundwater inflow exist, added to high water head the soil supporting conditions are very poor because the soil consists of sand and silt, etc. It is necessary to have grouting and mini pipe roof installed in the region for ground reinforcement to decrease permeability. According to this result of horizontal boring and laboratory soil testing, ground reinforcement was achieved by L.W grouting for range of 3.0 times the tunnel radius, to increase stability of the tunnel we used the ling-cut method, 0.8m for one step excavation, shotcrete with 25cm thick, steel lib with H-$125{\times}125$. and a temporary shotcrete invert 20cm thick was installed to prevent deformation of the tunnel.

  • PDF

Analysis on the Displacement Constraints of Frames for Plastic Film Greenhouse (플라스틱 필름 온실용 구조재의 변위제한 검토)

  • Yun, Sung-Wook;Choi, Man-Kwon;Lee, Siyoung;Kang, Donghyeon;Kim, Hyeon-Tae;Yoon, Yong-Cheol
    • Journal of agriculture & life science
    • /
    • v.50 no.1
    • /
    • pp.273-281
    • /
    • 2016
  • In this study, after carrying out a bending test that targeted the frames of plastic film greenhouse, the load-displacement relationship was analyzed to be used as basic data to develop greenhouse construction and maintenance guidelines. As a result, regardless of the shapes of the specimen, the yield and the maximum load increased as the size of the specimen increased. The displacement also showed the same pattern. A steel pipe showed lower yield and maximum load than a square pipe, and the displacement was large. In the steel pipe case, the displacement under the yield and maximum load was in the range of approximately 1.42-4.20mm and 5.80-24.13mm, respectively. In the square pipe case, the displacement under the yield and maximum load was in the range of approximately 1.62-3.00mm and 3.13-8.01mm, respectively. Further, a large difference was observed between the result of this test and the values calculated by a conventionally provided standard. In particular, not much difference was found from the result of this test in the case of a purlin member from the values provided by previous researches. However, a large difference was observed in the column or main rafter members. Furthermore, when a wide-span and venlo type, which is a glasshouse, was used as a target(h/100 and h/80), the displacement under the yield and maximum load was approximately 28.0mm and 35.0mm, respectively, which showed a large difference compared with the Netherlands standard(14.0mm) of a glasshouse. Further, in the main rafter case, a large difference was observed in the displacement limit according to the width(i.e., span) of the greenhouse where members are used. Therefore, because the displacement limit can vary depending on various factors such as type, form, and size of a greenhouse, we determined that studies or tests that consider these factors should be carried out to reflect them in the construction and maintenance of greenhouses.

Effect of the Pipe Joint on Structural Performance of a Single-span Greenhouse: A Full-scale Experimental and Numerical Study (파이프 이음부가 단동온실 구조성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Shin, Hyun Ho;Ryu, Hee Ryong;Yu, In Ho;Cho, Myeong Whan;Seo, Tae Cheol;Kim, Seung Yu;Choi, Man Kwon
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.410-418
    • /
    • 2021
  • This study was conducted in 8.2m wide single-span greenhouse to investigate the effect of presence or absence of rafter steel pipe joint and foundation conditions on greenhouse structural performance. Structural performance was evaluated by static loading test using the structural performance evaluation system for single-span greenhouse. The measured displacement was compared with the predicted result by numerical analysis. The displacement of each measurement location showed a significant difference regardless of the conditions of the foundation and presence or absence of rafter steel pipe joint. Compared to the hinge conditions, the difference in structural performance of the greenhouse in the fixed conditions was seen to be relatively large. The difference in structural performance according to presence or absence of rafter steel pipe joints, the lateral stiffness of the joint was 8.1% greater.

Thermal aging of Gr. 91 steel in supercritical thermal plant and its effect on structural integrity at elevated temperature

  • Min-Gu Won;Si-Hwa Jeong;Nam-Su Huh;Woo-Gon Kim;Hyeong-Yeon Lee
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • In this study, the influence of thermal aging on structural integrity is investigated for Gr. 91 steel. A commercial grade Gr. 91 steel is used for the virgin material, and service-exposed Gr. 91 steel is sampled from a steam pipe of a super critical plant. Time versus creep strain curves are obtained through creep tests with various stress levels at 600 ℃ for the virgin and service-exposed Gr. 91 steels, respectively. Based on the creep test results, the improved Omega model is characterized for describing the total creep strain curve for both Gr. 91 steels. The proposed parameters for creep deformation model are used for predicting the steady-state creep strain rate, creep rupture curve, and stress relaxation. Creep-fatigue damage is evaluated for the intermediate heat exchanger (IHX) in a large-scale sodium test facility of STELLA-2 by using creep deformation model with proposed creep parameters and creep rupture curve for both Gr. 91 steels. Based on the comparison results of creep fatigue damage for the virgin and service-exposed Gr. 91 steels, the thermal aging effect has been shown to be significant.

Numerical analysis for deformation characteristics under the freezing and bursting of Al pipe (알루미늄 관의 동파 거동특성에 관한 수치적 연구)

  • Choi, Seung-Hyun;Lee, Dong-Won;Ko, Young-Bae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.8
    • /
    • pp.4763-4768
    • /
    • 2014
  • Recently, aluminum pipes have been used instead of steel pipes for open and shut machines in vinyl housing because of its corrosion-resistance and light weight. In particular, the light weight is very useful for fitting and removal by human resources. On the other hand, an aluminum pipe is weak in winter because aluminum has a larger thermal expansion coefficient than steel. This study examined the freezing and bursting of aluminum pipes by numerical analysis. The mechanical-thermal deformation characteristics were analyzed under the condition of ice volumetric expansion in aluminum pipes reaching 50%. From numerical analysis, large stresses above the yield stress occurred in aluminum pipe after ice expanded in the net diameter immediately. In addition, the freezing and bursting of aluminum pipes was predicted around an ice volumetric expansion of 6 - 7% because the thickness of the aluminum pipe reached an aluminum elongation ratio of 17%. Therefore, it is recommended that aluminum pipes be sealed perfectly to prevent water flow in the pipe. These results suggest that it is very difficult to prevent freezing and bursting of aluminum pipes by water freezing in the pipe.

The Slope Reinforcement by use of FRP (FRP를 이용한 사면보강)

  • 이상덕;권오엽;최용기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11b
    • /
    • pp.155-180
    • /
    • 2000
  • The pattern of domestic slope construction has been steadily changed from the simpled and small-scale to the large-scale and complicated one, frequently near the existing structures, as the density of population and the traffic increases. In some cases, the slopes become steeper and larger due to the road improvement and construction. For the rock slope, the existence of discontinuity cannot be disregarded and acts as an important factor on the slope stability. Most of the existing methods for stabilizing the slope were focused on reducing the slope angle. Under the specific geographic condition, it is necessary to concentrate more efforts on the research and development of supporting system for the slope stability. As a supporting system, it is often very advantageous to use the FRP pipe grouting method that is similar to the existing soil nailing method or the rock bolting method but uses the high strength FRP pipe as a principal reinforcement in place of steel bar. Through the FRP pipe, the grout material can be injected into the rock mass to improve its shear strength to the required value. .In this study, the characteristics of FRP are investigated by the laboratory tests and the field tests. And, the practical aspects of FRP method are reviewed and analyzed.

  • PDF

A Study on Field Application of a Deformable Rod Sensor to Large Diameter Drilled Shafts (대구경 현장타설말뚝에 대한 변형봉 센서의 현장적용성에 관한 연구)

  • 정성기;김상일;정성교;최용규;이민희
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.15-22
    • /
    • 2003
  • In the conventional load transfer analysis for a steel pipe drilled shaft, it was assumed that the concrete's strain is the same as the measured steel's strain and the elastic modulus of the steel and the concrete calculated by the formular as prescribed by specification is used in the calculation of pile axial load. But, the pile axial load calculation by conventional method differed to some extent from the actual pile load. So, the behavior of a steel pipe drilled shaft could not be analyzed exactly. Thus, the necessity to measure the strain for each pile component was proposed. In this study, a new approach for load transfer measurement of large diameter drilled shafts was suggested ; the strain of each pile component(i. e., steel and concrete) was measured by DRS(Deformable Rod Sensor), the elastic modulus was determined by the uniaxial compression test for concrete specimens made at test site and a value of elastic modulus was evaluated as average tangential modulus corresponding to the stress level of the (0.2-0.6)$f_{ck}$. Field application was confirmed by the results of load transfer measurement tests for 3 drilled shafts. The errors for calculated pile head load were -11 ∼16% and 3.4% separately.