• Title/Summary/Keyword: large steel pipe

Search Result 138, Processing Time 0.03 seconds

Displacement Behavior of Tunnel under Bridge Abutment due to Supporting Systems (교량기초 하부에 위치한 터널의 지보방법에 따른 변위거동)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo;Kim, Seung-Ryul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.613-620
    • /
    • 2005
  • This research is experimental paper to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

The Support Types of the Tunnel for Centrifuge Model (터널의 지보방법에 관한 원심모형실험(遠心模型實驗))

  • Yoo, Nam-Jae;Lee, Myung-Woog;Park, Byung-Soo
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.199-209
    • /
    • 2002
  • This research is experimental thesis to prepare the structural safety of the upper bridge for support type on tunnel and the effect of settlement. Unit weight test and uni-axial compression test have been performed to simulate the physical property of foundation on the tunnel. Tunnel model of slip form type for centrifuge model has been developed to performed the tunnel excavation while field stress is activated. And the support type of tunnel such as umbrella arch method and large diameter steel pipe reinforce method has been tested for the centrifuge model. After the analysis of experiment, results show that internal displacement of large diameter steel pipe reinforce method is smaller than that of the umbrella arch method.

  • PDF

A Secular Change of Strength for Galvanized Steel Pipes for Vinyl Housing (비닐하우스용 아연도강관의 강도경년변화 시험(농업시설))

  • 남상운;김문기;권혁진
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.296-301
    • /
    • 2000
  • Bend test for metallic materials was conducted on samples of galvanized steel pipes being used in greenhouse farms. A secular change of yield strength for galvanized steel pipes was analyzed with the part of buried in the ground and exposed in the atmosphere. From those experimental results and corrosion rate of galvanized film, the standard durable years for pipe framed greenhouses are estimated that the small sized pipe houses of movable type is 7∼8 years and the large sized pipe houses of fixed type is 14∼15 years.

  • PDF

Analytical Study of HAT Joint between PHC Pile and Steel Pipe Column (강재기둥과 PHC 파일을 연결하는 반구형 접합부(HAT Joint)의 유한요소 해석 PART I : 원형강관기둥)

  • Oh, Jin-Tak;Lee, Yeun-Seung;Kim, Sang-Bong;Ju, Young-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.103-110
    • /
    • 2015
  • To overcome disadvantages of usual spread foundation in large space structure, some prototypes of a joint of the PHC pile to steel pipe column that directly connects a column to a PHC pile are analytically studied. With the consideration of strength requirement and stress concentration of joint of the PHC pile to column, we suggest the most appropriate one.

대구경 소켓경사반력말뚝의 인발거동에 관한 연구

  • 최용규;김상옥;정창규;정성기;김상일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.277-284
    • /
    • 2000
  • Using the large diameter (D = 2,500mm, L = 40m) batter steel pipe piles, designed as compression piles but used as reaction piles during the static compression load test of socketed test piles (D = 1,000mm, L = 40m), static pile load tests for large diameter instrumented rock-socketed piles were performed. The reaction steel pipe piles were driven 20m into the marine deposit and weathered rock layer and then l0m socketed with reinforced concrete through the weathered rock layer and into hard rock layer. Steel pipe and concrete in the steel pile part, and concrete and rebars in the socketed parts were instrumented to measure strains in each part. The pullout amounts of reaction pile heads were also measured with LVDT. During the static pile load test, total compressional load of about 20MN was loaded on the head of test piles, but load above 20MN was not loaded due to lack of loading capacity of loading system. Over the course of the study, maximum pullout amount up to 7mm was measured in the heads of reaction piles when loaded op to 10MN and 1mm of pullout amount was measured. More than 85% of pullout load was transfered in the residual weathered rock layer and about 10% in the soft rock layer, which was somewhat different transfer mechanism in the static compressional load tests.

  • PDF

Laboratory Experiments for Evaluating Dynamic Response of Small-scaled Circular Steel Pipe (실내 실험을 통한 소형 모형 원형 강관의 동적 반응 평가)

  • Song, Jung Uk;Lee, Jong-Sub;Park, Min-Chul;Byun, Yong-Hoon;Yu, Jung-Doung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.81-92
    • /
    • 2018
  • For a marine bridge foundation construction, a large-circular-steel-pipe has been proposed for supporting vertical load and preventing water infiltration. However, a ship collision can adversely affect the structural stability. This paper presents a fundamental study on dynamic responses of the large-circular-steel-pipe by an impact load. In laboratory experiments, small-scaled steel pipe is installed in a soil tank. The soil height and water level are set to 23 cm and 25~70 cm, respectively. The upper part of the steel pipe is impacted using a hammer to simulate the ship collision. The dynamic responses are measured using accelerometers and strain gauges. Experimental results show that the strain decreases as the measured location is lowered. The higher frequency components appear in the impact load condition compared to the microtremor condition. However, the higher frequency components measured at the strain gauge located below the water level do not appear. For the accelerometer signal, the maximum frequency under the impact load is higher than that of the microtremor. The maximum frequency decreases as water level increases but it is larger than the maximum frequency of the microtremor. This study shows that strain gauge and accelerometer can be useful for evaluating the dynamic responses of large-circular-steel-pipes.

Performance assessment of polymeric filler and composite sleeve technique for corrosion damage on large-diameter water pipes (대구경 상수도관 부식 손상부의 고분자 필러와 복합슬리브 성능 평가)

  • Ho-Min Lee;Jeong-Soo Park;Jeong-Joo Park;Cheol-Ho Bae
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.4
    • /
    • pp.203-214
    • /
    • 2023
  • In this study, the physical properties and fracture characteristics according to the tensile load are evaluated on the materials of the polymeric filler and carbon fiber-based composite sleeve technique. The polymeric filler and the composite sleeve technique are applied to areas where the pipe body thickness is reduced due to corrosion in large-diameter water pipes. First, the tensile strength of the polymeric filler was 161.48~240.43 kgf/cm2, and the tensile strength of the polyurea polymeric filler was relatively higher than that of the epoxy. However, the tensile strength of the polymeric filler is relatively very low compared to ductile cast iron pipes(4,300 kgf/cm2<) or steel pipes(4,100 kgf/cm2). Second, the tensile strength of glass fiber, which is mainly used in composite sleeves, is 3,887.0 kgf/cm2, and that of carbon fiber is up to 5,922.5 kgf/cm2. The tensile strengths of glass and carbon fiber are higher than ductile cast iron pipe or steel pipe. Third, when reinforcing the hemispherical simulated corrosion shape of the ductile cast iron pipe and the steel pipe with a polymeric filler, there was an effect of increasing the ultimate tensile load by 1.04 to 1.06 times, but the ultimate load was 37.7 to 53.7% compared to the ductile cast iron or steel specimen without corrosion damage. It was found that the effect on the reinforcement of the corrosion damaged part was insignificant. Fourth, the composite sleeve using carbon fiber showed an ultimate load of 1.10(0.61T, 1,821.0 kgf) and 1.02(0.60T, 2,290.7 kgf) times higher than the ductile cast iron pipe(1,657.83 kgf) and steel pipe(2,236.8 kgf), respectively. When using a composite sleeve such as fiber, the corrosion damage part of large-diameter water pipes can be reinforced with same level as the original pipe, and the supply stability can be secured through accident prevention.

Evaluation of Face Stability of Tunnel with Steel Pipe-Reinforced Multi-step Grouting (강관다단 그라우팅으로 보강된 터널의 막장 안정성 평가)

  • 이인모;이재성;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.273-280
    • /
    • 2003
  • Tunneling in difficult geological conditions is often inevitable especially in urban areas. Ground improvement and reinforcement techniques are often required to guarantee safe tunnel excavations and/or to prevent damage to adjacent structures. The steel pipe-reinforced multi-step grouting method has been recently applied to tunnel sites in Korea as an auxiliary technique. In this study, the face stability with steel pipe-reinforced multi-step grouting was evaluated by simultaneously considering two factors: one is the effective stress acting on the tunnel face calculated by limit theorem and limit equilibrium method; the other is the seepage force obtained by means of numerical analysis. The study revealed that the influence of the steel pipe-reinforced multi-step grouting on the support pressure in dry condition is not significant while there is relatively a large amount of reduction in seepage forces by adopting the technique in saturated condition. The effect of the anisotropy of permeability on the seepage force acting on the tunnel face was also estimated by conducting the coupled analysis. It was found that a higher horizontal permeability compared with the vertical one causes reduction in the seepage force acting on the tunnel face.

  • PDF

The Determination of Optimal Steel Pipe Wall Thickness Considering Ground Condition (지반 조건을 고려한 최적강관두께의 결정)

  • Park, Jaesung;Oh, Bungdong;Lee, Hojin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.3
    • /
    • pp.11-15
    • /
    • 2008
  • By considering manufacture and economic factor, the steel pipes have been employed for water supply pipeline with large diameter. The standard to decide a thickness of pipe was provided by the waterworks standard (Ministry of Construction & Transportation, 1992) in South Korea. However, there was no the systematic standard to confirm a thickness of pipe in it. Thus, it should be able to apply to unsuitable the Stewart formula for the buried pipe to design for an optimum thickness of pipe. In order to meet revised the waterworks standard (The Ministry of Environment, 1997), it has been considered both the ground condition and all of the stresses to compute a thickness of pipe. As a results, a method is suggested to determine thickness of pipe after comparing and validating the obtained results with the established results from the Stewart formula.

  • PDF

The Pullout Behavior of a Large-diameter Batter ]Reaction Piles During Static Pile Load Test for a Large Diameter Socketed Pipe Pile (대구경 말뚝의 정재하시험시 대구경 경사반력말뚝의 인발거동)

  • 김상옥;성인출;박성철;정창규;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.5-16
    • /
    • 2002
  • The pullout behavior of large-diameter steel pipe piles(diameter = 2,500mm, length = 38~40m), which were designed as compression piles but used as reaction piles during a static compression load test on a pile(diameter = 1,000m, length = 40m), was investigated. The steel pipe piles were driven by 20m into a marine deposit and weathered soil layer and then socketed by 10m into underlying weathered and soft rock layers. The sockets and pipe were filled with reinforced concrete. The steel pipe and concrete in the steel pipe zone and concrete and rebars in the socketed zone were fully instrumented to measure strains in each zone. The pullout deformations of the reaction pile heads were measured by LVDTs. Over the course of the study, a maximum uplift deformation of 7mm was measured in the heads of reaction piles when loaded to 10MN, and 1mm of residual uplift deflection was measured. In the reaction piles, about 83% and about 12% of the applied pullout loads were transferred in the weathered rock layer and in the soft rock layer, respectively. Also, at an uplift force of 10MN, shear stresses due to the uplift in the weathered rock layer md soft rock layer were developed as much as 125.3kPa and 61.8kPa, respectively. Thus, the weathered rock layer should be utilized as resisting layer in which frictional farce could be mobilized greatly.