• 제목/요약/키워드: large steel casting

검색결과 26건 처리시간 0.024초

대형잉곳 전산모사 결함 정량화 및 활용연구 (Cast Defect Quantify on the Simulation for Large Steel Ingots and Its Application)

  • 남궁정;김용찬;김문철;윤중묵;채영욱;이동희;오상훈;김남수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.94-97
    • /
    • 2009
  • Cast defect in large steel ingots are estimated in quality and compared each other cast conditions on simulation results by now. The cast defects, micro-crack, shrinkage, pin hole which are predictable in simulation with a reasonable accuracy. In this study, 15 ton steel ingot casting was simulated for solidification model and cast defect prediction. And the real cast was carried out in a foundry for the compeer to the simulation results, the cast defect prediction. Also, the quantity of predicted defect was tried to measuring with the defect mach counting for the various simulated cast conditions. The defect quantity work was used to find the optimized cast condition in DOE(design of experiment) procedure.

  • PDF

개량차분법에 의한 주강품 및 대형 잉곳드의 응고해석과 수축공 예측 (Solidification Analysis of Steel Castings & Large Ingots By Modified Finite Difference Method)

  • 이영철;김종원;홍준표
    • 한국주조공학회지
    • /
    • 제9권1호
    • /
    • pp.67-72
    • /
    • 1989
  • Solidification analysis was conducted on large steel castings and ingots by a modified finite difference method. Auto-mesh generation system was developed for improving the application of the computer analysis system to casting disign. Combined use of the prediction parameters, solidification time and temperature gradient, and an auxiliary parameter, shrinkage potential, were used to predict the formation of shrinkage defects. Several examples on the prediction of shrinkage cavity by this method were campared with the experimental reslts. It was found that a quantitative design of large steel castings and ingots can be made by the computer aided analysis of solidification process.

  • PDF

후육 Al 주조재의 기포결함 최소화를 위한 임계냉각속도의 영향 (Effect of Critical Cooling Rate for Minimization of Porosity in the Thick Aluminum Casting)

  • 곽시영;조인성;김용현;이희권
    • 한국주조공학회지
    • /
    • 제37권6호
    • /
    • pp.181-185
    • /
    • 2017
  • In the present study, the effect of cooling rate on the formation of the porosity in the thick aluminum sand casting was investigated. Nowadays, due to considerations of weight and cost reduction, large scale thick aluminum casting has replaces steel frames for vacuum chambers for semiconductor production. Several thick aluminum castings were manufactured using chill with temperature measurements. The castings were inspected using 3D computed tomography in order to quantify the porosity defect density in the castings. Effects of the thickness of the chill on the porosity defect density were discussed.

대형 주물공정 용접작업장의 건강 위해인자 및 환기 개선 (Health Risk Factors and Ventilation Improvements in Welding Operation at Large-sized Casting Process)

  • 정종현;정유진;이상만;이정희;손병현;임현술
    • 청정기술
    • /
    • 제20권2호
    • /
    • pp.171-178
    • /
    • 2014
  • 이 연구에서는 대형 주물공정 용접작업장 근로자들의 건강보호 및 작업환경 개선을 위해 위해인자 조사 및 분석작업을 수행하였다. 또한, 대상 작업장의 작업환경을 개선하기 위해 측정 및 전산유체해석 모델링을 수행한 후 효과적인 환기방법을 제안하였다. 대형 주물공정 용접작업장 근로자들의 건강 위해인자를 조사한 결과, A사는 산화철분진, B사와 C사는 용접흄, D사는 용접 흄과 산화철분진이 주오염원인 것으로 확인되었다. 작업자 호흡영역에서의 흄 농도는 $0.05{\sim}4.37mg/m^3$이었고, 용접작업장 공기 중 흄 농도는 $0.13{\sim}7.54mg/m^3$이었다. 또한, 용접작업 시 최적의 환기방법을 제안하기 위해 측정 및 전산유체해석 모사를 수행한 결과, 배기공정의 경우에는 배기 덕트를 용접점에 근접시켜 국소배기를 실시하는 것이 효과적인 것으로 나타났다. 급기공정의 경우에는 개구부 끝 부분에서 급기를 하며 급기용 팬은 작업 공간 외부에 설치하는 것이 효과적일 것으로 나타났다. 향후 대형 주물공정 용접작업장의 터널형 반밀폐 공간에 대한 환기방법을 표준화한다면 주물산업 및 조선업 등에 종사하는 용접 근로자들의 건강보호 및 작업환경 개선에 매우 효과적일 것으로 판단된다.

열처리 공정이 대형 주단조품의 조직변화에 미치는 영향 (Microstructure change of large cast-forged product by heat treatment conditions)

  • 이명원;이영선;이승욱;이동희;김상식;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.102-106
    • /
    • 2009
  • Thermal energy control is a important factor in a large size casting and forging. Good control of thermal energy makes characteristics and defect of large cast-forged part, such as large sized forged shell. We have studied about not only large size ring forging process and after heat treatment by FEM simulation. Also, changes of temperature and microstructure for forged shell were predicted. Therefore, we can choose the proper heat treatment condition by FEA. The sectional properties confirmed by practical experiment and evaluation have presented possibilities of process design by computational analysis.

  • PDF

LARGE EDDY SIMULATION OF VORTEXING FLOW IN THE MOLD WITH DC MAGNETIC FIELD

  • Zhongdong Qian;Yulin Wu
    • 한국전산유체공학회지
    • /
    • 제10권1호
    • /
    • pp.56-62
    • /
    • 2005
  • Large eddy simulation of vortexing flow of molten steel in the continuous casting mold with and without DC magnetic field was conducted. The influence of the position of magnetic field to the residence time and depth of the vortex was analyzed. The mechanism of the influence of magnetic field to the vortexing flow was found. The computational results show that the vortexing flow is the result of shearing of the two un-symmetric surface flows from the mold narrow faces when they meet adjacent to the SEN; the un-symmetric flow for turbulent vortex is caused by turbulent energy of the fluid and that for biased vortex is caused by biased flow and the turbulent energy of fluid; with the moving of the magnetic field from the centerline of the outlet of the SEN to the free surface, the surface velocity is decreased gradually and the depth of the turbulent vortex and the biased vortex is decreased, the residence time is increased with the magnetic field moves from DL=120mm to DL=60mm and then decreased; the turbulent vortex and the biased vortex can be eliminated when the magnetic field is located at the free surface.

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb;Fahad, Muhammad;Aslam, Muhammad
    • Structural Monitoring and Maintenance
    • /
    • 제9권1호
    • /
    • pp.81-105
    • /
    • 2022
  • The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

기술능력 발전의 시기별 특성: 포항제철 사례연구

  • 송성수
    • 기술혁신연구
    • /
    • 제10권1호
    • /
    • pp.174-200
    • /
    • 2002
  • Technological capabilities of POSCO (Pohang Iron & Steel Co.) have been developed through acquisition, catch-up, and generation stage. In 1970s standardized operation technologies were acquired based on Japan's technological cooperation. The prime route of technological acquisition was overseas training and operation technologies were articulated by mock and real operation. In 1980s POSCO focused to catch-up advanced technologies through in-house R&D activities. Technological informations were broadly accumulated, task force teams were constructed for important technological tasks, and the scope of technological innovation covered nearly all fields. In 1990s POSCO launched long-term projects based on the large-scale investment and challenged the new fronts of steel technologies. Frontier technologies such as smelting reduction and thin slab casting were early commercialized and new technological concepts were emerged. In conclusion, this article suggests some implications on the development of technological capabilities in Korea.

  • PDF

열화된 CrMoV 주조강에 대한 보수 용접 방법 및 후열처리 특성 평가 (Evaluation of Repair Welding Method and PWHT Properties for Degraded CrMoV Casting Steel)

  • 홍재훈;전문창;정권석;이영국
    • 열처리공학회지
    • /
    • 제35권3호
    • /
    • pp.121-129
    • /
    • 2022
  • Recently the growth of the renewable energy production has caused the flexible operation in LNG combined cycle power plant. Due to the rapid start and stop operations, large CrMoV castings used for turbine casings and valve bodies could be distorted and lead to replacement or welding repair. This study was performed to find out the characteristics of the repair welding for a damaged CrMoV casting steel. A typical field repair method (arc & TIG welding) was applied to making specimens. The degraded N2 packing head sample from the steam turbine was used. The evaluations of weldments were carried out in terms of microstructural characterization, microhardness measurements, tensile, creep-rupture and fatigue tests. Color etching was also applied for better understanding of welding microstructures. As the boundary between HAZ and base material was deteriorated by welding, it caused microstructural changes formed during PWHT and the shortening of the remaining residual life. By comparing the properties according to repair welding method, it was possible to derive what important welding factors were. As a result, arc welding method is more suitable for repair welding on CrMoV castings.

고속도강롤의 미세조직, 고온마모특성, 표면조도에 미치는 탄소, 텅스텐, 바나듐의 영향 (Effects of Carbon, Tungsten, and Vanadium on the Microstructure, High-Temperature Wear Properties, and Surface Roughness of High Speed Steel Rolls)

  • 하대진;성효경;박준욱;이성학
    • 대한금속재료학회지
    • /
    • 제47권7호
    • /
    • pp.406-415
    • /
    • 2009
  • A study was conducted on the effects of carbon, tungsten, and vanadium on the wear properties and surface roughness of four High Speed Steel (HSS) rolls manufactured by the centrifugal casting method. Hot-rolling simulation tests were carried out using a high-temperature wear tester capable of controlling speed, load, and temperature. HSS rolls contained a large amount (up to 25 vol.%) of carbides such as MC, $M_{2}C$, $M_{7}C_{3}$, and $M_{6}C$ carbides formed in the tempered martensite matrix. The matrix consisted mainly of lath tempered martensite when the carbon content in the matrix was small, and contained a considerable amount of plate tempered martensite when the carbon content increased. The high-temperature wear test results indicated that the wear properties and surface roughness of the rolls improved when the amount of hard MC carbides formed inside solidification cells increased. The rolls distribution was also homogeneous. The best wear properties and surface roughness were obtained from a roll where a large amount of MC carbides was homogeneously distributed in the lath tempered martensite matrix. The proper contents of carbon equivalent, tungsten equivalent, and vanadium were 2.0~2.3%, 9~10%, and 5~6%, respectively.