• Title/Summary/Keyword: large static deformation

Search Result 136, Processing Time 0.026 seconds

Airframe Structure Development of Solar-powered HALE UAV EAV-3 (고고도 장기체공 태양광 무인기 EAV-3 기체구조 개발)

  • Shin, Jeong Woo;Park, Sang Wook;Lee, Sang Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.25 no.3
    • /
    • pp.35-43
    • /
    • 2017
  • Research for solar-powered high altitude long endurance(HALE) UAV was conducted by Korea Aerospace Research Institute(KARI), and the EAV-3 with 19.5m wing span was developed. For HALE flight, aircraft should be lightly designed. Especially, airframe structure that accounts for a large portion of the total weight of aircraft should be lightweight. In this paper, development process of airframe structure for solar-powered HALE UAV, EAV-3, is described briefly. Domestic developed T-800 grade CFRP(Carbon Fiber Reinforced Plastic) composite material with high modulus and strength was used to design main load carrying structures. Flightloads analysis that takes into account large structural deformation was carried out. Stress and flutter analyses for airframe structure sizing were conducted. Static strength test for main wing and aircraft ground vibration test were conducted successfully and structural integrity was secured.

Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers (다중거동 복합형 감쇠장치를 적용한 철골골조의 내진성능실험)

  • Roh, Ji Eun;Heo, Seok Jae;Lee, Sang Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • In this study, the effectiveness of a multi-action hybrid damper (MHD) composed of lead rubber bearing (LRB) and friction pad was verified in terms of seismic performance improvement of a frame structure. The LRB and the friction elements are connected in series, so the LRB governs the intial small deformation and the friction determines large deformation behavior. Cyclic loading tests were conducted by using a half scale steel frame structure with the MHD, and the results indicated that the structure became to have the stable trilinear hysteresis with large initial stiffness and first yielding due to the LRB, and the second yielding due to the friction. The MHD could significantly increase the energy dissipation capacity of the structure and the hysteresis curves obtained by tests were almost identical to the analytically estimated ones.

Static Fluid Structure Interaction Analysis of Wind Turbine Blade Skin Fabric (풍력발전기 블레이드 패브릭 스킨의 정적 유체-구조연성 해석에 관한 연구)

  • An, Hyung-ju;Bae, Jae-sung;Hwang, Jai-hyuk
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.4
    • /
    • pp.1-10
    • /
    • 2016
  • This study analyzes the fabric skin of a wind turbine blade. The fabric skin is a membrane structure that was analyzed using a static Fluid Structure Interaction (FSI) method. For this study the blade of large 5 MW wind turbine was selected. In order to examine the validity of the analysis, a variety of reference data were used. Before conducting static FSI analysis, a Computational Fluid Dynamics (CFD) analysis and modal analysis were done. Then interaction analysis was conducted. FSI analysis was done with imported Aerodynamic data that resulted from the CFD analysis. The resulting observations about the membrane structure, inherent tensions, deformation of the final structure, and aerodynamic forces caused by deformation are reported.

Full-scale tests and finite element analysis of arched corrugated steel roof under static loads

  • Wang, X.P.;Jiang, C.R.;Li, G.Q.;Wang, S.Y.
    • Steel and Composite Structures
    • /
    • v.7 no.4
    • /
    • pp.339-354
    • /
    • 2007
  • Arched Corrugated Steel Roof (ACSR) is a kind of thin-walled steel shell, composing of arched panels with transverse small corrugations. Four full-scale W666 ACSR samples with 18m and 30m span were tested under full and half span static vertical uniform loads. Displacement, bearing capacities and failure modes of the four samples were measured. The web and bottom flange in ACSR with transverse small corrugations are simplified to anisotropic curved plates, and the equivalent tensile modulus, shear modulus and Poisson's ratio of 18m span ACSR were measured. Two 18 m-span W666 ACSR samples were analyzed with the Finite Element Analysis program ABAQUS. Base on the tests, the limit bearing capacity of ACSR is low, and for half span loading, it is 74-75% compared with the full span loading. When the testing load approached to the limit value, the bottom flange at the sample's bulge place locally buckled first, and then the whole arched roof collapsed suddenly. If the vertical loads apply along the full span, the deformation shape is symmetric, but the overall failure mode is asymmetric. For half span vertical loading, the deformation shape and the overall failure mode of the structure are asymmetric. The ACSR displacement under the vertical loads is large and the structural stiffness is low. There is a little difference between the FEM analysis results and testing data, showing the simplify method of small corrugations in ACSR and the building techniques of FEM models are rational and useful.

A Study on the Seismic Resistance of Fill-dams by Newmark-type Deformation Analysis (Newmark 기반 변형해석에 의한 필댐의 내진저항성 연구)

  • Park, Dong Soon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.161-170
    • /
    • 2014
  • Newmark-type deformation analysis has rarely been done in Korea due to the popularity of simple pseudo-static limit equilibrium analysis and detailed time-history FE/FD dynamic analysis. However, the Korean seismic dam design code updated in 2011 prescribes Newmark-type deformation analysis as a major dynamic analysis method for the seismic evaluation of fill dams. In addition, a design PGA for dynamic analysis is significantly increased in the code. This paper aims to study the seismic evaluation of four existing large fill dams through advanced FEM/Newmark-type deformation analyses for the artificial earthquake time histories with the design PGA of 0.22g. Dynamic soil properties obtained from in-situ geo-physical surveys are applied as input parameters. For the FEM/Newmark analyses, sensitivity analyses are performed to study the effects of input PGA and $G_{max}$ of shell zone on the Newmark deformation. As a result, in terms of deformation, four fill dams are proved to be reasonably safe under the PGA of 0.22g with yield coefficients of 0.136 to 0.187, which are highly resistant for extreme events. Sensitivity analysis as a function of PGA shows that $PGA_{30cm}$ (a limiting PGA to cause the 30 cm of Newmark permanent displacement on the critical slip surface) is a good indicator for seismic safety check. CFRD shows a higher seismic resistance than ECRD. Another sensitivity analysis shows that $G_{max}$ per depth does not significantly affect the site response characteristics, however lower $G_{max}$ profile causes larger Newmark deformation. Through this study, it is proved that the amplification of ground motion within the sliding mass and the location of critical slip surface are the dominant factors governing permanent displacements.

Performance assessment of RC frame designed using force, displacement & energy based approach

  • Kumbhara, Onkar G.;Kumar, Ratnesh
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.699-714
    • /
    • 2020
  • Force based design (FBD) approach is prevalent in most of the national seismic design codes world over. Direct displacement based design (DDBD) and energy based design (EBD) approaches are relatively new methods of seismic design which claims to be more rational and predictive than the FBD. These three design approaches are conceptually distinct and imparts different strength, stiffness and ductility property to structural members for same plan configuration. In present study behavioural assessment of frame of six storey RC building designed using FBD, DDBD and EBD approaches has been performed. Lateral storey forces distribution, reinforcement design and results of nonlinear performance using static and dynamic methods have been compared. For the three approaches, considerable difference in lateral storey forces distribution and reinforcement design has been observed. Nonlinear pushover analysis and time history analysis results show that in FBD frame plastic deformation is concentrated in the lower storey, in EBD frame large plastic deformation is concentrated in the middle storeys though the inelastic hinges are well distributed over the height and, in DDBD frame plastic deformation is approximately uniform over the height. Overall the six storey frame designed using DDBD approach seems to be more rational than the other two methods.

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

Study on Chucking Force and Substrate Deformation Characteristics of Electrostatic Chuck for Deposition According to Substrate Sizes (증착용 정전척의 기판 크기에 따른 척킹력 및 기판 변형 특성 연구)

  • Seong Bin Kim;Dong Kyun Min
    • Journal of the Semiconductor & Display Technology
    • /
    • v.23 no.2
    • /
    • pp.12-18
    • /
    • 2024
  • A Electrostatic chuck is a device that fixes the substrate, using the force between charges applied between two parallel plates to attract substrates such as wafers or OLED panels. Unlike mechanical suction methods, which rely on physical fixation, this method utilizes the force of electrostatics for fixation, making it important to verify the adhesion force. As the size of the substrate increases, deformations due to gravity or chucking force also increase, and the adhesion force decreases rapidly as the distance between the chuck and the substrate increases. The outlook for displays is shifting from small to large OLEDs, necessitating consideration of substrate deformations. In this paper, to confirm the deformation of the substrate through various patterns, a simplified 2D model using Ansys' electromagnetic field analysis program, Maxwell, and the static structural analysis program, Mechanical, was utilized to observe changes in adhesion force according to the variation in the air gap between the substrate and the chuck. Additionally, the chucking force was analyzed for the size of the substrate, and the deformation of the substrate was confirmed when gravity and chucking force act simultaneously.

  • PDF

Coupled Axial and Torsional Vibration Analysis in Large Diesel Engines and Generators for Stationary Power Plants (내연 발전용 대형 디젤 엔진-발전기 축계의 종-비틈 연성진동 해석)

  • Park, Heui-Joo;Park, Jong-Po
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1040-1045
    • /
    • 2000
  • This paper presents results of coupled axial and torsional vibration analysis of shafting system in large diesel engines and generators for stationary power plants. Axial vibration of the shafting system takes place due to mainly torsional deformation or vibration and breathing effect of crank throws, caused by cylinder gas forces and reciprocating inertia of the engine. Cross-coupled stiffness matrix of the crank throws is calculated employing a finite element model of the crank throw and a static condensation method. Forced response analysis of the shafting system is performed using the calculated stiffness matrix and derived governing equations.

  • PDF

Behavior Characteristics of Railway Roadbed Retained by Geosynthetic Reinforced Segmental Wall Under Train Load (열차 하중 작용 시 블록식 보강토 옹벽으로 지지된 철도 노반의 거동)

  • Lee, Seong Hyeok;Choi, Chan Yong;Lee, Jin Wook
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.5
    • /
    • pp.467-475
    • /
    • 2012
  • Static and dynamic train load tests were conducted to evaluate the train load transfer mechanism in the roadbed which was retained by two types (fully and partially) of segmental retaining walls reinforced by geogrid. The test roadbed was 2.6m high, 5m wide, and 6m long. A combination of earth pressure gages, displacement transducers, and strain gages were placed in specific locations to measure the responses. Test results showed that the wall displacement pattern as well as the earth pressure for the fully reinforced retaining wall was different from those for the partially reinforced retaining wall. In the dynamic train load test, the strain in the upper part of the wall tended to decrease, and both the residual deformation and the rate of the deformation were significantly lower than those in the current design standard.