• 제목/요약/키워드: large source

검색결과 2,529건 처리시간 0.028초

Towards Effective Analysis and Tracking of Mozilla and Eclipse Defects using Machine Learning Models based on Bugs Data

  • Hassan, Zohaib;Iqbal, Naeem;Zaman, Abnash
    • Soft Computing and Machine Intelligence
    • /
    • 제1권1호
    • /
    • pp.1-10
    • /
    • 2021
  • Analysis and Tracking of bug reports is a challenging field in software repositories mining. It is one of the fundamental ways to explores a large amount of data acquired from defect tracking systems to discover patterns and valuable knowledge about the process of bug triaging. Furthermore, bug data is publically accessible and available of the following systems, such as Bugzilla and JIRA. Moreover, with robust machine learning (ML) techniques, it is quite possible to process and analyze a massive amount of data for extracting underlying patterns, knowledge, and insights. Therefore, it is an interesting area to propose innovative and robust solutions to analyze and track bug reports originating from different open source projects, including Mozilla and Eclipse. This research study presents an ML-based classification model to analyze and track bug defects for enhancing software engineering management (SEM) processes. In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore, different evaluation measures are employed to analyze and evaluate the experimental results. Moreover, a comparative analysis is given to compare the experimental results of ANN with NB. The experimental results indicate that the ANN achieved high accuracy compared to the NB. The proposed research study will enhance SEM processes and contribute to the body of knowledge of the data mining field.

QUADRUPLY-IMAGED QUASARS: SOME GENERAL FEATURES

  • Tuan-Anh, P.;Thai, T.T.;Tuan, N.A.;Darriulat, P.;Diep, P.N.;Hoai, D.T.;Ngoc, N.B.;Nhung, P.T.;Phuong, N.T.
    • 천문학회지
    • /
    • 제53권6호
    • /
    • pp.149-159
    • /
    • 2020
  • Gravitational lensing of point sources located inside the lens caustic is known to produce four images in a configuration closely related to the source position. We study this relation in the particular case of a sample of quadruply-imaged quasars observed by the Hubble Space Telescope. Strong correlations between the parameters defining the image configuration are revealed. The relation between the image configuration and the source position is studied. Some simple features of the selected data sample are exposed and commented upon. In particular, evidence is found for the selected sample to be biased in favor of large magnification systems. While having no direct impact on practical analyses of specific systems, our results have pedagogical value and deepen our understanding of the mechanism of gravitational lensing.

A Parallel Approach to Navigation in Cities using Reconfigurable Mesh

  • El-Boghdadi, Hatem M.;Noor, Fazal
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.1-8
    • /
    • 2021
  • The subject of navigation has drawn a large interest in the last few years. Navigation problem (or path planning) finds the path between two points, source location and destination location. In smart cities, solving navigation problem is essential to all residents and visitors of such cities to guide them to move easily between locations. Also, the navigation problem is very important in case of moving robots that move around the city or part of it to get some certain tasks done such as delivering packages, delivering food, etc. In either case, solution to the navigation is essential. The core to navigation systems is the navigation algorithms they employ. Navigation algorithms can be classified into navigation algorithms that depend on maps and navigation without the use of maps. The map contains all available routes and its directions. In this proposal, we consider the first class. In this paper, we are interested in getting path planning solutions very fast. In doing so, we employ a parallel platform, Reconfigurable mesh (R-Mesh), to compute the path from source location to destination location. R-Mesh is a parallel platform that has very fast solutions to many problems and can be deployed in moving vehicles and moving robots. This paper presents two algorithms for path planning. The first assumes maps with linear streets. The second considers maps with branching streets. In both algorithms, the quality of the path is evaluated in terms of the length of the path and the number of turns in the path.

Classification of Metro Station Areas Using Multi-Source Big Data: Case Studies in Beijing

  • Shuo Chen;Xiangyu Li
    • 국제초고층학회논문집
    • /
    • 제12권1호
    • /
    • pp.63-74
    • /
    • 2023
  • Large-capacity public transportation systems, represented by urban metro lines, are the key to alleviating the significant increase in urbanization and motorization in China. But to improve the agglomeration effect of metro stations in a more accurate and targeted way requires scientific evaluation and classification of the surrounding areas of metro stations. As spatial and functional design are the core factors for urban renewal design, this study took Beijing as an example, using multi-source data to evaluate the morphology and functional composition surrounding areas of metro stations, and the Boston Consulting Group (BCG) matrix was used to classify and characterize each type of surrounding areas from morphological-functional dimensions. It shows a negative correlation of the mix-use index with the floor area ratio, and only about 20% of the areas achieve the ideal situation of high construction intensity with high mix-use diversity. Hoping to provide a reference for city managers and designers in dealing with the surrounding metro stations with different construction intensities in a more precise way.

Determination of dosimetric dependence for effective atomic number of LDR brachytherapy seed capsule by Monte Carlo simulation

  • Berkay Camgoz;Dilara Tarim
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.2734-2741
    • /
    • 2023
  • Brachytherapy is a special case of radiotherapy. It should be arranged according to some principles in medical radiation applications and radiation physics. The primary principle is to use as low as reasonably achievable dose in all ionizing radiation applications for diagnostic and therapeutic treatments. Dosimetric distributions are dependent on radioactive source properties and radiation-matter interactions in an absorber medium such as phantom or tissue. In this consideration, the geometrical structure and material of the seed capsule, which surrounds a radioactive material, are directly responsible for isodose profiles and dosimetric functions. In this study, the radiometric properties of capsule material were investigated on dose distribution in a water phantom by changing its nuclear properties using the EGSnrc Monte Carlo (MC) simulation code. Effective atomic numbers of hypothetic mixtures were calculated by using different elements with several fractions for capsule material. Model 6711 brachytherapy seed was modeled by EGSnrc/Dosrcnrc Code and dosimetric functions were calculated. As a result, dosimetric parameters of hypothetic sources have been acquired in large-scale atomic number. Dosimetric deviations between the data of hypothetic seeds and the original one were analyzed. Unit dose (Gy/Particle) distributions belonging to different types of material in seed capsule have remarkably differed from the original capsule's data. Capsule type is major variable to manage the expected dose profile and isodose distribution around a seed. This study shows us systematically varied scale of material type (cross section or effective atomic number dependent) offers selective material usage in production of seed capsules for the expected isodose profile of a specific source.

A GPU-based point kernel gamma dose rate computing code for virtual simulation in radiation-controlled area

  • Zhihui Xu;Mengkun Li;Bowen Zou;Ming Yang
    • Nuclear Engineering and Technology
    • /
    • 제55권6호
    • /
    • pp.1966-1973
    • /
    • 2023
  • Virtual reality technology has been widely used in the field of nuclear and radiation safety, dose rate computing in virtual environment is essential for optimizing radiation protection and planning the work in radioactive-controlled area. Because the CPU-based gamma dose rate computing takes up a large amount of time and computing power for voxelization of volumetric radioactive source, it is inefficient and limited in its applied scope. This study is to develop an efficient gamma dose rate computing code and apply into fast virtual simulation. To improve the computing efficiency of the point kernel algorithm in the reference (Li et al., 2020), we design a GPU-based computing framework for taking full advantage of computing power of virtual engine, propose a novel voxelization algorithm of volumetric radioactive source. According to the framework, we develop the GPPK(GPU-based point kernel gamma dose rate computing) code using GPU programming, to realize the fast dose rate computing in virtual world. The test results show that the GPPK code is play and plug for different scenarios of virtual simulation, has a better performance than CPU-based gamma dose rate computing code, especially on the voxelization of three-dimensional (3D) model. The accuracy of dose rates from the proposed method is in the acceptable range.

초광각 변환기를 이용한 전방위 조명 광학계의 설계 (Optical Design of an Omnidirectional Illumination System Using an Ultra Wide Converter)

  • 이주호;유재명
    • 한국광학회지
    • /
    • 제35권1호
    • /
    • pp.18-23
    • /
    • 2024
  • 미술관 등 전시 공간에서의 조명은 바닥보다는 주로 전시물이 붙어 있는 벽면에 비춰져야 한다. 일반적으로 사용되는 LED 조명은 LED에 확산판이 결합된 형태로서 각도별 배광 분포가 일정한 램버시안 광원에 가까우며, 수직 입사가 이뤄지는 바닥면에 조명이 집중된다. 따라서 이러한 일반적 형태의 조명 방법은 벽면을 조명하기에는 적합하지 않으며, 벽면에 조명을 집중시키기 위해서는 각도별 배광 분포 중 각도가 큰 영역에서의 광량이 커지도록 해야 한다. 본 연구에서는 광원에서의 발산각을 180도로 확산시키기 위해 초광각 변환기를 사용하는 조명 광학계에 대해 논의하고자 한다.

Reproductive ability of minipigs as surrogates for somatic cell nuclear transfer

  • Joonho Moon;Su-Jin Kim;Jinseok Lee;Hyeyoung Kang;Bumrae Cho;Sung Joo Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.156-166
    • /
    • 2024
  • Pigs are genetically, anatomically, and physiologically similar to humans. Recently, pigs are in the spotlight as a suitable source animal for xenotransplantation. However, to use pigs as source animals, pigs should be raised in designated pathogen-free facilities. There is abundant data from embryo transfer (ET) experiments using farm pigs as surrogates, but data on ET experiments using minipigs are scarce. Eighty minipigs were used for ET experiments and after transplantation, the implantation and delivery rates were investigated. It was also confirmed whether the pregnancy rate could be increased by changing the condition or surgical method of the surrogate. In the case of minipigs that gave birth, the size of the fetal sac on the 28th day of ET was also measured. The factors that can affect the pregnancy rate such as estrus synchronization program, ovulation status at the time of ET, the number of repeated ET surgeries, and the ET sites, were changed, and the differences on the pregnancy rate were observed. However there were no significant differences in pregnancy rate in minipigs. The diameter of the implanted fetal sac on the 28th day after ET in the minipigs whose delivery was confirmed was calculated to be 4.7 ± 0.5 cm. In conclusion, there were no significant differences in pregnancy rate of minipigs in the comparative experiment on various factors affecting the pregnancy rate. However, additional experiments and analyses are needed due to the large individual differences of the minipigs.

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • 국제학술발표논문집
    • /
    • The 9th International Conference on Construction Engineering and Project Management
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

재난현장조사 공간정보 웹 가시화를 위한 3차원 맵핑시스템 개발 (Development of 3D Mapping System for Web Visualization of Geo-spatial Information Collected from Disaster Field Investigation)

  • 김성삼;노현주;신동윤;이준우;김현주
    • 대한원격탐사학회지
    • /
    • 제36권5_4호
    • /
    • pp.1195-1207
    • /
    • 2020
  • GeoWeb 기술이 발전하면서 재난관리 분야에서도 웹을 통한 2D/3D 공간정보 서비스에 대한 관심과 활용도가 높아지고 있다. 본 논문은 재난사고 현장에서 수집된 다양한 공간정보를 웹 환경에서 시각화하기 위한 3D 공간정보 맵핑 플랫폼 구축에 관한 연구로서, 웹 개발 표준기술인 HTML5/WebGL과 오픈소스를 활용하여 재난사고 현장에서 다양한 형태로 수집된 2D/3D 공간 데이터와 대용량의 LiDAR 점군 데이터에 대한 웹기반의 공간정보 맵핑 서비스 방안을 제시하였다. 첫째, 오픈소스인 GeoServer의 WMS 서비스와 PostGIS를 이용하여 수집된 재난현장 조사 2D 데이터를 공간 DB로 구축한 후 웹 환경에서 렌더링하였다. 둘째, 웹 환경에서 대용량 3D 점군 데이터를 효율적으로 렌더링하기 위하여 다중 해상도의 옥트리 구조를 이용하여 점군 데이터를 2D 타일로 단순화하는 Potree 알고리즘을 적용하였다. 마지막으로 OpenLayers3를 기반으로 3차원 지도를 제어 및 측정하기 위한 기본·응용 기능을 Graphic User Interface(GUI)로 구현하여 2D/3D 공간정보의 웹 시각화를 위한 3D 웹 맵핑 파일럿 시스템을 개발하였다. 향후, 재난현장의 각종 2D 조사 데이터 및 다양한 공간영상정보를 구축된 웹기반 3차원 공간정보시스템에 중첩·표출함으로써 재난사고 과학조사 및 분석 업무에 활용될 수 있을 것으로 기대된다.