
Soft Computing and Machine Intelligence Journal, Vol (1), Issue (1), 2021

Towards Effective Analysis and Tracking of Mozilla and
Eclipse Defects using Machine Learning Models based on
Bugs Data

Zohaib Hassan a*, Naeem Iqbal a and Abnash Zaman b,

(a) FSRA&IT Solutions Providing Organization Peshawar, Pakistan
(b) Faculty of Bioinformatics Shaheed Benazeer Bhutto Women University Peshawar, Pakistan
* Corresponding author: Dev.zohaibmrt@hotmail.com

Abstract: Analysis and Tracking of bug reports is a challenging field in software
repositories mining. It is one of the fundamental ways to explores a large amount of
data acquired from defect tracking systems to discover patterns and valuable knowledge
about the process of bug triaging. Furthermore, bug data is publically accessible and
available of the following systems, such as Bugzilla and JIRA. Moreover, with robust
machine learning (ML) techniques, it is quite possible to process and analyze a massive
amount of data for extracting underlying patterns, knowledge, and insights. Therefore,
it is an interesting area to propose innovative and robust solutions to analyze and
track bug reports originating from different open source projects, including Mozilla
and Eclipse. This research study presents an ML-based classification model to analyze
and track bug defects for enhancing software engineering management (SEM) processes.
In this work, Artificial Neural Network (ANN) and Naive Bayesian (NB) classifiers are
implemented using open-source bug datasets, such as Mozilla and Eclipse. Furthermore,
different evaluation measures are employed to analyze and evaluate the experimental
results. Moreover, a comparative analysis is given to compare the experimental results of
ANN with NB. The experimental results indicate that the ANN achieved high accuracy
compared to the NB. The proposed research study will enhance SEM processes and
contribute to the body of knowledge of the data mining field.

Keywords: Bugs Tracking; Mozilla; Eclipse; Machine Learning; Artificial Neural
Network; Naive Bayesian

1. Introduction

Software development projects involve the use of a wide range of tools to produce a software
artifact, and as a result, the history of any given software development may be distributed across a
number of such tools. Recent research in this area [1] has described the different types of artifacts
that can be used to reconstruct a software project’s history. These include, but may not be limited to,
the source code itself, source code management systems, issue tracking systems, messages between
developers and users, meta-data about the projects, including the artifacts produced from each phase
of the Software Development life cycle, and usage data. As shown below in Figure 1.

Soft Computing and Machine Intelligence Journal, Vol (1), Issue (1), 2021 Page: 1 of 52

http://www.scmij.com
http://www.scmij.com


Vol (1), Issue (1), 2021

Figure 1. Software Development Process Life Cycle.

The history of these artifacts, pertaining to different categories of the Software, is available in
huge datasets in the shape of open source systems (OSS). For instance, Software programs, executions
potentially (e.g., when program execution traces are turned on) generate huge amounts of data.
However, such data sets are rather different from the datasets generated from nature or collected from
video cameras since they represent human creativity in different phases such as designs and codes. It
is important to mine such data to monitor program execution status, improve system performance,
isolate software bugs, detect software plagiarism, analyze programming system faults, and recognize
system malfunctions. Data mining for software engineering can be partitioned into static analysis and
dynamic/stream analysis, based on whether the system can collect traces beforehand for post-analysis
or it must react in real-time to handle online data. Different methods have been developed in this
domain by integrating and extending the methods developed in machine learning, data mining, pattern
recognition, and statistics. For example, statistical analysis (such as hypothesis testing) approaches
[2], can be performed on program execution traces to isolate the bugs’ locations that distinguish
program success runs from the failed ones. The application of data mining techniques to the software
engineering domain and proposing a novel method/algorithm(s) is a research area that can further
study/investigate.

2. Related work

As background for this work, we discuss various approaches. Common problems that software
development organizations encounter in instituting measurement programs include too much data
collected, not the right data collected, and preliminary analysis of the collected data. This leads to
numerous problems, including the decreased cost-effectiveness of the measurement program and
disillusionment about metrics on the part of developers and managers. The end result is often the
eventual failure of the measurement program as a whole. In response to such problems, several
structured approaches to software measurement have been developed and are used in organizations.
These approaches are referred to as "goal-oriented" approaches because they use goals, objectives,
strategies, or other mechanisms to systematically guide the choice of data to be collected and analyzed.
In [3], they have used CVSgrab to analyze the ArgoUML and PostgreSQL repositories. By clustering
the related resources, they generated the projects’ evolution based on the clustered file types. Useful
conclusions can be drawn by careful manual analysis of the generated visualized project development
histories. For example, they discovered that there was only one author for each significant initial
contribution in both projects.

Page: 2 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

Table 1. Mining Approaches Used in Software Maintenance.

Mining Approach Input Data Data Analysis Results
Searching/

matching [4,5]
SCM (bug reports, bug fixes)

Identification of bug introducing

changes
Clustering [6], Source code Extract significant patterns from the

system source code groups of similar
classes, methods, data

Clustering [3] , SCM, source code Patterns in history and the
development process

Clustering [7], Source code System modules
Clustering [8], Frequent
pattern mining and
Association Rules

Source code Structure clone and their
categorization

Classification [9], Commits (SCRs) classes of commits
Classification [10], Source code FP & NFP modules Classifier
Classification [11], CVS and Bugzilla Stability of prediction models
Frequent pattern mining [12],
and Association Rules

Source code Prediction of failures, correlations
between entities identification of
additions, modifications, deletions
of syntactic entities

Frequent pattern mining and
association rules [13],

Software libraries Reused patterns

Frequent pattern mining and
Association rules [14],

Source code of legacy system Design alternatives

Frequent pattern mining and
association rules [15],

Instantiation code of the software Usage changes

Regression, Classification
[16],

SCM issue tracking database Functionality analysis

Classification based on
Statistics Differencing[3],

Source code Syntactic and semantic changes

Mining based on Statistics, CVS.’

annotations [4],
the version history of source code, classes Syntax & semantic – hidden

dependencies
Hidden dependencies CVS
annotations [5],

Bug & comments modification request Syntax & semantic file coupling

Mining via Heuristic [6], CVS annotation heuristics Candidate entities for change

3. Proposed methodology

Research is a highly complex and subtle human activity, which may be difficult, if not impossible,
to formulate formally. Nevertheless, some lessons and general principles can be learnt from the
experience of scientists. There are some basic principles and techniques that are commonly used in
most types of scientific investigations. It is this commonality that can make it possible to extend the
scientific research methods to our research. I will adopt the model of the research process of Garziano
et al. [7], and combine it with other models [8]. It is possible to combine several phases into one or
divide one phase into more detailed steps. The division between phases is not clear-cut. The research
methodology will not follow a rigid sequencing of the phases. Iteration of different phases may be
necessary [7]. Two effective data mining techniques can be applied to the data sets to deduce the
research’s desired results. These are: 1) Supervised learning is mainly performed through Classification
and Prediction. 2) Unsupervised learning is mainly performed through Clustering. In the specific
approach, clustering techniques are used to analyze the input data and provide a rough grasp of
the maintenance engineer’s software system. Clustering produces overviews of systems by creating
mutually exclusive groups of classes, member data, methods based on their similarities. Furthermore,
they concluded that PostgreSQL did not start from scratch but was built at some previous project. An
interesting evolution of this work could be a more automated way of concluding the development

Page: 3 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

history, like extracting clusters labels, mapping them to the taxonomy of development processes, and
automatically extracting the development phases with comments emerging from taxonomy concepts.
We will follow the following steps as shown in the block diagram 2:

Figure 2. Block Diagram of the Proposed System.

The proposed methodology carried out the following steps: Data Analysis Collection of dataset
Pre-processing dataset Data Visualization Features Engineering Features Normalization Min-Max
Normalization Training/Testing Classifiers ANN NB

4. Experimental results and discussions

This section presents the results obtained from the experimentation environment. In this work, the
following machine learning (ML) classifiers, i.e., ANN, and NB are trained and tested on the prepared
dataset. The following Table 2 is used to present the implementation and experimental setup of the
proposed work.

Table 2. Implementation and experimentation setup of the proposed work.

System Component Description
Operating System Microsoft Windows 8.1 (64-bits)
CPU Intel ®Core ™ i3-2130 CPU at 3.40 GHz
Primary Memory 8 GB RAM
Programming Language Python
IDE (Platform) PyCharm
Data Storage MS Excel, MySQL
Classification Tool WEKA

In this paper, the following datasets are considered, such as Eclipse and Mozilla Defect Tracking
(MDK), which contains bug reports of five popular products. In the Eclipse dataset, we considered the
following five products, such as JDT, PDE, Eclipse platform, and CDT. Moreover, the dataset covers
each bug report’s attributes and includes all the updated lists of each considered bug report. The
following ML classifiers are implemented to detect the bug and classify it into the desired category.
In this work, we used the k-fold cross-validation (where the value of k is 10) to validate the results

Page: 4 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

obtained from implemented classifiers [17]. The performances of the proposed classifiers are evaluated
and tested based on the following ML measures, such as accuracy (AC), recall (RE), Precision (PR),
and F-measure (FM) [18]. All these performance measures are utilized to find the best classifier among
implemented classifiers. In this work, we utilized the default parameters for the classification process
in WEKA [19]. Figure 3 shown the classification results obtained using ANN and NB classifiers. The
classification results of both classifiers, such as the ANN and NB, obtained an accuracy of 82.38

Figure 3. Classification Results

4.1. Confusion Matrix-based analysis of Results

In this work, a confusion matrix (CF) based analysis is performed to analyze each implemented
classifier’s performance rate. A confusion matrix is a summary of prediction results on a classification
problem. The number of correct and incorrect predictions are summarized with count values and
broken down by each class. This is the key to the confusion matrix. The confusion matrix shows the
ways in which your classification model is confused when it makes predictions. It gives us insight not
only into the errors being made by a classifier but, more importantly, the types of errors that are being
made. There are the following terms are used as listed below: Positive (P): Observation is positive (for
example: is an apple).
Negative (N): Observation is not positive (for example, it is not an apple).
True Positive (TP): Observation is positive and is predicted to be positive.
False Negative (FN): Observation is positive but is predicted negative.
True Negative (TN): Observation is negative and is predicted to be negative.
False Positive (FP): Observation is negative but is predicted positive.
The following Table 3 is used to summarizes the results obtained using the ANN classifier. It can be
observed that the Tp rate of each class is higher as compared to other terms. The correct classification
rate of the ANN classifier is 82.32%.

Page: 5 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

Table 3. Confusion Matrix for ANN Classifier.

Predicted

Class

Text Runtime Resources Releng IDE

Text 1247 33 39 39 37
Runtime 47 826 15 21 55
Resources 30 31 676 27 33
Releng 41 48 42 1252 49
IDE 53 56 29 59 1113

The following Table 4 is used to summarizes the results obtained using the NB classifier. It is
found that Tp Rate of each class is higher as compared to other terms. In Table 4, it can be shown that
the NB classifier correctly classified 4449 total number of instances out of 5998.

Table 4. Confusion Matrix for Naive Bayes Classifier.

Predicted

Class

Text Runtime Resources Releng IDE

Text 1097 58 64 89 87
Runtime 72 726 45 51 70
Resources 64 65 553 50 65
Releng 83 94 74 1098 83
IDE 89 90 75 81 975

4.2. Performance Measures

There are several performance measures available in the field of ML. These performance measures
are used to evaluate the implemented classifiers to find the best classifier among all implemented
classifiers. In this work, we used the following ML performance measures, such as accuracy (AC),
recall (RE), Precision (PR), and F-measure (FM), to evaluate the performance of each classifier. The
AC measure is used to validate the performance of the classifiers. It is a beneficial measure for the
balanced dataset. It is the ratio of correct predictions to total predictions made. The following Equation
1 is used to calculate the AC ratio:

AC =
Tp + Tn

Tp + Fp + Fn + Tn
(1)

However, there are problems with accuracy. It assumes equal costs for both kinds of errors. A 99%
accuracy can be excellent, good, mediocre, poor, or terrible depending upon the problem. Recall (RE)
can be defined as the total number of correctly classified positive examples divided by the total number
of positive examples. High Recall indicates the class is correctly recognized (a small number of Tn).
The RE is defined as follows in Equation 2.

RE =
Tp

Tp + Fn
(2)

Page: 6 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

To get the value of Precision (PR), we divide the total number of correctly classified positive examples
by the total number of predicted positive examples. High Precision indicates an example of labeled as
positive is indeed positive (a small number of Fp). PR is defined as follows in Equation 3.

PR =
Tp

Tp + Fp
(3)

High recall, low Precision: This means that most of the positive examples are correctly recognized
(low FN), but there are a lot of false positives. Low recall, high Precision: This shows that we miss a
lot of positive examples (high FN), but those we predict as positive are indeed positive (low FP). The
F-measure (FM) is also defined as it uses Harmonic Mean in place of Arithmetic Mean as it punishes
the extreme values more as expressed in Equation 4. The F-Measure (FM) will always be nearer to the
smaller value of PE or RE.

FM =
2 × (PR × RE)

PR + RE
(4)

Table 5 is used to summarize the experimental results obtained using the ANN and NB classifiers. It
can be observed that the ANN classifier has a high accuracy rate as compared to the NB classifier. We
observed that the ANN classifier has the highest classification results in terms of AC and recall values,
and its accuracy is 94.55

Table 5. Experimentation results

Classifier AC (%) RE (%) PR (%) FM (%)
ANN 82.38 82.31 82.32 82.31
NB 75.43 75.41 75.40 75.40

Figure 4. Comparison of experimental results

Total number of features: 18 Included in the classification process: 15

Page: 7 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

Table 6. Data Distribution Summary

Bug Type Total Number of Instances
Text 1350
Runtime 914
Resources 997
Releng 1377
IDE 1260

Figure 5. Graphically Data Distribution.

Table 7. Proposed Features

# Proposed Features
Lexical Features
1 Words characters ratio
2 Total Number of Unique words
3 Unique words ratio
4 Total number of Stop words
5 Stop words ratio
Syntactic Features (POS Tagging)
6 Total number of Nouns as Unigram
7 Total number of Verbs as Unigram
8 Total number of Adverbs as Unigram
9 Total number of Adjectives as Unigram
10 Total number of Interjections as Unigram
Sentiment Features (Not Included)
11 Positive words ratio
12 Negative words ratio
13 Sentiment Score
Statistical Features
14 Status of Bug i.e. resolved, verified, assigned etc.
15 Priority level of bug to solve soon (P1 to P5)
16 Operating system on which bug occurred
17 Severity of the occurred bug on the software system such as normal, major etc.
18 Total number of user reports.

Page: 8 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

4.3. PREPROCESSING

Pre-processing is a technique that involves transforming raw data into an understandable format.
Real-world data is often incomplete, inconsistent, and lacking in certain behaviors or trends and is
likely to contain many errors. Data pre-processing is a proven method of resolving such issues. In
the Real-world data are generally incomplete: lacking attribute values, lacking specific attributes of
interest, or containing only aggregate data.
Noisy: containing errors or outliers.
Inconsistent: containing discrepancies in codes or names.

4.4. Confusion matrix

4.4.1. Artificial neural networks classifier confusion matrix

Artificial neural networks (ANN), or connectionist systems, are computing systems inspired by,
but not identical to, biological neural networks that constitute animal brains. Such systems "learn"
to perform tasks by considering examples, generally without being programmed with task-specific
rules. ANN Classification is the process of learning to separate samples into different classes by
finding standard features between samples of known classes. ANN Classification is an example of
Supervised Learning. Known class labels help indicate whether the system is performing correctly
or not. This information can be used to indicate the desired response, validate the accuracy of the
system, or be used to help the system learn to behave correctly. The known class labels can be thought
of as supervising the learning process; the term is not meant to imply that you have some sort of
interventionist role. The working of ANN takes its roots from the neural network residing in the
human brain. ANN operates on something referred to as Hidden State. These hidden states are similar
to neurons. Each of these hidden states is a transient form that has a probabilistic behavior. A grid of
such a hidden state act as a bridge between the input and the output.

4.4.2. Naive bayes classifier confusion matrix

Naive Bayes classifiers are a family of simple "probabilistic classifiers" based on applying Bayes’
theorem with strong independence assumptions between the features. They are among the simplest
Bayesian network models. Naïve Bayes classifiers are highly scalable, requiring several parameters
linear in the number of variables (features/predictors) in a learning problem. Maximum-likelihood
training can be done by evaluating a closed-form expression, which takes linear time rather than by
expensive iterative approximation used for many other classifiers. A naive Bayes classifier is a model
that assigns class labels to problem instances, represented as vectors of feature values, where the class
labels are drawn from some finite set. There is not a single algorithm for training such classifiers but a
family of algorithms based on a common principle. All naive Bayes classifiers assume that a particular
feature’s value is independent of the value of any other feature, given the class variable. For example,
a fruit may be considered to be an apple if it is red, round, and about 10 cm in diameter. A naive Bayes
classifier considers each of these features to contribute independently to the probability that this fruit
is an apple, regardless of any possible correlations between the color, roundness, and diameter features

5. Conclusion and future work

In this paper, we have proposed a technique to solve the bugs of the Bugzilla dataset. Whenever
a bug comes in the Firefox or any other search engine, we relate it to the software development life
cycle and relate it to one of the stages of the life cycle. And then, we suggest a solution for that bug.
Whenever this bug occurs again, we will directly assign to that person oral solve directly to follow the
previous steps, followed for the solution.

Page: 9 of 52

http://www.scmij.com


Vol (1), Issue (1), 2021

References

1. Rodriguez, D.; Herraiz, I.; Harrison, R. On software engineering repositories and their open problems. 2012
First International Workshop on Realizing AI Synergies in Software Engineering (RAISE). IEEE, 2012, pp.
52–56.

2. Liu, C.; Fei, L.; Yan, X.; Han, J.; Midkiff, S.P. Statistical debugging: A hypothesis testing-based approach.
IEEE Transactions on software engineering 2006, 32, 831–848.

3. Voinea, L.; Telea, A. Mining software repositories with cvsgrab. Proceedings of the 2006 international
workshop on Mining software repositories, 2006, pp. 167–168.

4. Śliwerski, J.; Zimmermann, T.; Zeller, A. When do changes induce fixes? ACM sigsoft software engineering
notes 2005, 30, 1–5.

5. Shippey, T.; Bowes, D.; Hall, T. Automatically identifying code features for software defect prediction:
Using ast n-grams. Information and Software Technology 2019, 106, 142–160.

6. Arshad, S.; Tjortjis, C. Clustering software metric values extracted from c# code for maintainability
assessment. Proceedings of the 9th Hellenic Conference on Artificial Intelligence, 2016, pp. 1–4.

7. Tjortjis, C. Data Mining Code Clustering (DMCC): An approach supporting software maintenance
and comprehension. Technical report, Technical report, School of Science & Technology, International
Hellenic . . . , 2019.

8. Kanwal, J.; Basit, H.A.; Maqbool, O. Structural clones: An evolution perspective. 2018 IEEE 12th
International Workshop on Software Clones (IWSC). IEEE, 2018, pp. 9–15.

9. Hindle, A.; German, D.M.; Holt, R. What do large commits tell us? A taxonomical study of large commits.
Proceedings of the 2008 international working conference on Mining software repositories, 2008, pp. 99–108.

10. Tan, P.N.; Steinbach, M.; Kumar, V. Introduction to data mining, Pearson education. Inc., New Delhi 2006.
11. Ekanayake, J.; Tappolet, J.; Gall, H.C.; Bernstein, A. Tracking concept drift of software projects using defect

prediction quality. 2009 6th IEEE International Working Conference on Mining Software Repositories. IEEE,
2009, pp. 51–60.

12. Zimmermann, T.; Zeller, A.; Weissgerber, P.; Diehl, S. Mining version histories to guide software changes.
IEEE Transactions on Software Engineering 2005, 31, 429–445.

13. Fu, S.; Shen, B. Code bad smell detection through evolutionary data mining. 2015 ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement (ESEM). IEEE, 2015, pp. 1–9.

14. Naseem, R. An improved hierarchical clustering combination approach for software modularization. PhD
thesis, Universiti Tun Hussein Onn Malaysia, 2017.

15. Schäfer, T.; Jonas, J.; Mezini, M. Mining framework usage changes from instantiation code. Proceedings of
the 30th international conference on Software engineering, 2008, pp. 471–480.

16. Raza, U.; Tretter, M. Predicting software outcomes using data mining and text mining. SAS Global Forum,
2007.

17. Raghavan, S.; Rohana, R.; Leon, D.; Podgurski, A.; Augustine, V. Dex: A semantic-graph differencing tool
for studying changes in large code bases. 20th IEEE International Conference on Software Maintenance,
2004. Proceedings. IEEE, 2004, pp. 188–197.

18. Rolfsnes, T.; Di Alesio, S.; Behjati, R.; Moonen, L.; Binkley, D.W. Generalizing the analysis of evolutionary
coupling for software change impact analysis. 2016 IEEE 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER). IEEE, 2016, Vol. 1, pp. 201–212.

19. German, D.M. An empirical study of fine-grained software modifications. Empirical Software Engineering
2006, 11, 369–393.

Page: 10 of 52

http://www.scmij.com

	Introduction
	Related work
	Proposed methodology 
	Experimental results and discussions
	Confusion Matrix-based analysis of Results
	Performance Measures
	PREPROCESSING
	Confusion matrix
	Artificial neural networks classifier confusion matrix
	Naive bayes classifier confusion matrix


	Conclusion and future work
	References

