• Title/Summary/Keyword: large solution

Search Result 2,869, Processing Time 0.029 seconds

ONIOM and Its Applications to Material Chemistry and Catalyses

  • Morokuma, Keiji
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.797-801
    • /
    • 2003
  • One of the largest challenges for quantum chemistry today is to obtain accurate results for large complex molecular systems, and a variety of approaches have been proposed recently toward this goal. We have developed the ONIOM method, an onion skin-like multi-level method, combining different levels of quantum chemical methods as well as molecular mechanics method. We have been applying the method to many different large systems, including thermochemistry, homogeneous catalysis, stereoselectivity in organic synthesis, solution chemistry, fullerenes and nanochemistry, and biomolecular systems. The method has recently been combined with the polarizable continuum model (ONIOM-PCM), and was also extended for molecular dynamics simulation of solution (ONIOM-XS). In the present article the recent progress in various applications of ONIOM and other electronic structure methods to problems of homogeneous catalyses and nanochemistry is reviewed. Topics include 1. bond energies in large molecular systems, 2. organometallic reactions and homogeneous catalysis, 3. structure, reactivity and bond energies of large organic molecules including fullerenes and nanotubes, and 4. biomolecular structure and enzymatic reaction mechanisms.

OPTIMAL LIQUIDATION OF A LARGE BLOCK OF STOCK WITH REGIME SWITCHING

  • Shin, Dong-Hoon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.4
    • /
    • pp.737-757
    • /
    • 2011
  • This work is concerned with an optimal selling rule for a large position of stock in a market. Selling a large block of stock in a short period typically depresses the market, which would result in a poor filling price. In addition, the large selling intensity makes the regime more likely to be poor state in the market. In this paper, regime switching and depressing terms associated with selling intensity are considered on a set of geometric Brownian models to capture movements of underlying asset. We also consider the liquidation strategy to sell much smaller number of shares in a long period. The goal is to maximize the overall return under state constraints. The corresponding value function with the selling strategy is shown to be a unique viscosity solution to the associated HJB equations. Optimal liquidation rules are characterized by a finite difference method. A numerical example is given to illustrate the result.

Innovative iteration technique for large deflection problem of annular plate

  • Chen, Y.Z.
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.605-620
    • /
    • 2013
  • This paper provides an innovative iteration technique for the large deflection problem of annular plate. After some manipulation, the problem is reduced to a couple of ODEs (ordinary differential equation). Among them, one is derived from the plane stress problem for plate, and other is derived from the bending of plate. Since the large deflection for plate is assumed in the problem, the relevant non-linear terms appear in the resulting ODEs. The pseudo-linearization procedure is suggested to solve the problem and the nonlinear ODEs can be solved in the way for the solution of linear ODE. To obtain the final solution, it is necessary to use the iteration. Several numerical examples are provided. In the study, the assumed value for non-dimensional loading is larger than those in the available references.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

A simple finite element formulation for large deflection analysis of nonprismatic slender beams

  • AL-Sadder, Samir Z.;Othman, Ra'ad A.;Shatnawi, Anis S.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.6
    • /
    • pp.647-664
    • /
    • 2006
  • In this study, an improved finite element formulation with a scheme of solution for the large deflection analysis of inextensible prismatic and nonprismatic slender beams is developed. For this purpose, a three-noded Lagrangian beam-element with two dependent degrees of freedom per node (i.e., the vertical displacement, y, and the actual slope, $dy/ds=sin{\theta}$, where s is the curved coordinate along the deflected beam) is used to derive the element stiffness matrix. The element stiffness matrix in the global xy-coordinate system is achieved by means of coordinate transformation of a highly nonlinear ($6{\times}6$) element matrix in the local sy-coordinate. Because of bending with large curvature, highly nonlinear expressions are developed within the global stiffness matrix. To achieve the solution after specifying the proper loading and boundary conditions, an iterative quasi-linearization technique with successive corrections are employed considering these nonlinear expressions to remain constant during all iterations of the solution. In order to verify the validity and the accuracy of this study, the vertical and the horizontal displacements of prismatic and nonprismatic beams subjected to various cases of loading and boundary conditions are evaluated and compared with analytic solutions and numerical results by available references and the results by ADINA, and excellent agreements were achieved. The main advantage of the present technique is that the solution is directly obtained, i.e., non-incremental approach, using few iterations (3 to 6 iterations) and without the need to split the stiffness matrix into elastic and geometric matrices.

Effect of diluent variation on cryopreservation of large yellow croaker Larimichthys crocea

  • Lim, Han Kyu;Irfan, Zidni;Lee, Hyo Bin;Song, Ji Hoon;Lee, Yun Ho
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.2
    • /
    • pp.63-77
    • /
    • 2021
  • The aim of this research was to investigate different factors, including cryoprotective agents (CPAs), diluents, dilution ratios, equilibrium times, freezing rates, and thawing methods to optimize cryopreservation protocols for large yellow croaker (Larimichthys crocea). The parameters evaluated were sperm motility, sperm activity index (SAI), survival rate, and DNA damage. Different types of CPAs, such as dimethyl sulfoxide (DMSO), propylene glycol (PG), ethylene glycol (EG), methanol, and glycerol, were tested for sperm preservation. The highest motility, SAI, and survival rate were observed when EG was used. Different diluents such as Stein's solution, Hank's balanced salt solution, marine fish Ringer's solution, artificial seminal plasma (ASP) of small yellow croaker, and Cortland solution were investigated. The highest post-thaw motility was observed upon using ASP as the diluent. Different concentrations of EG were then mixed with ASP to identify the optimal EG concentration. Experimental results showed that the motility (70.33 ± 1.20%), SAI (5), and survival rate (78.30 ± 0.42%) of post-thaw sperm were optimum when 10% EG and ASP were used as the CPA and diluent of cryopreservation, respectively. Post-thaw sperm motility was high at equilibration times below 150 s and at an optimum dilution ratio of 1:1 (sperm: CPA + diluent) and was not significantly different compared with fresh sperm motility. The freezing rate was found to be slow below -10℃/min. The thawing temperature of 45℃ was identified as ideal. The percentage of tail DNA in post-thaw sperm at 10% EG and ASP was also investigated and was found to have more significant DNA damage than that in fresh sperm but significantly lower damage than that in post-thaw sperm at EG concentrations of 5%, 15%, and 20% (p < 0.05). The cryopreservation protocols obtained in this study will be useful in large yellow croaker hatcheries.

Analysis of cavity expansion based on general strength criterion and energy theory

  • Chao Li;Meng-meng Lu;Bin Zhu;Chao Liu;Guo-Yao Li;Pin-Qiang Mo
    • Geomechanics and Engineering
    • /
    • v.37 no.1
    • /
    • pp.9-19
    • /
    • 2024
  • This study presents an energy analysis for large-strain cavity expansion problem based on the general strength criterion and energy theory. This study focuses on the energy dissipation problem during the cavity expansion process, dividing the soil mass around the cavity into an elastic region and a plastic region. Assuming compliance with the small deformation theory in the elastic region and the large deformation theory in the plastic region, combined with the general strength criterion of soil mass and energy theory, the energy dissipation solution for cavity expansion problem is derived. Firstly, from an energy perspective, the process of cavity expansion in soil mass is described as an energy conversion process. The energy dissipation mechanism is introduced into the traditional analysis of cavity expansion, and a general analytical solution for cavity expansion related to energy is derived. Subsequently, based on this general analytical solution of cavity expansion, the influence of different strength criterion, large-strain, expansion radius, cavity shape and characteristics of soil mass on the stress distribution, displacement field and energy evolution around the cavity is studied. Finally, the effectiveness and reliability of theoretical solution is verified by comparing the results of typical pressure-expansion curves with existing literature algorithms. The results indicate that different strength criterion have a relatively small impact on the displacement and strain field around the cavity, but a significant impact on the stress distribution and energy evolution around the cavity.

Fully Solution-Processed Green Organic Light-Emitting Diodes Using the Optimized Electron Transport Layers (최적화된 전자 수송층을 활용한 완전한 용액공정 기반 녹색 유기발광다이오드)

  • Han, Joo Won;Kim, Yong Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.7
    • /
    • pp.486-489
    • /
    • 2018
  • Solution-processed organic light-emitting diodes (OLEDs) have the advantages of low cost, fast fabrication, and large-area devices. However, most studies on solution-processed OLEDs have mainly focused on solution-processable hole transporting materials or emissive materials. Here, we report fully solution-processed green OLEDs including hole/electron transport layers and emissive layers. The electrical and optical properties of OLEDs based on solution-processed TPBi (2,2',2"-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole)) as the electron transport layer were investigated with respect to the spin speed and the number of layers. The performance of OLEDs with solution-processed TPBi exhibits a power efficiency of 9.4 lm/W. We believe that the solution-processed electron transport layers can contribute to the development of efficient fully solution-processed multilayered OLEDs.