• Title/Summary/Keyword: large solution

Search Result 2,884, Processing Time 0.04 seconds

ERotating Bondi Accretion Flow with and without outflow

  • Han, Du-Hwan;Park, Myeong-Gu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.52.4-53
    • /
    • 2020
  • It is less well known that the properties, especially the mass accretion rate, of accretion flow are affected by the angular momentum of accreting gas. Park (2009) found that the mass accretion rate \dot{m}, mass accretion rate in units of Bondi accretion rate, is inversely proportional to the angular momentum of gas λ, at the Bondi radius where gas sound speed is equal to the free-fall velocity and proportional to the viscosity parameter α, and also Narayan & Fabian (2011) found a similar relation, but the dependence of the mass accretion rate of the gas angular momentum is much weaker. In this work, we investigate the global solutions for the rotating Bondi flow, i.e., polytropic flow accreting via viscosity, for various accretion parameters and the dependence of the mass accretion rate on the physical characteristics of gas. We set the outer boundary at various radius r_{out}=10^3~10^5 r_{Sch}, where r_{Sch} is the Schwarzschild radius of the black hole. For a small Bondi radius, the mass accretion rate changes steeply, as the angular momentum changes, and for a large Bondi radius, the mass accretion rate changes gradually. When the accreting gas has a near or super Keplerian rotation, we confirm that the relation between the mass accretion rate and angular momentum is roughly independent of Bondi radius as shown in Park (2009). We find that \dot{m} is determined by the gas angular momentum at the Bondi radius in units of r_{Sch}c. We also investigate the solution for the rotating Bondi flow with the outflow. The outflow affects the determination of the mass accretion rate at the outer boundary. We find that the relation between the mass accretion and the gas angular momentum becomes shallower as the outflow strengthens.

  • PDF

A General and Versatile XFINAS 4-node Co-Rotational Resultant Shell Element for Large Deformation Inelastic Analysis of Structures (구조물의 대변형 비탄성 해석을 위한 범용 목적의 XFINAS 4절점 순수 변위 합응력 쉘요소)

  • Kim, Ki Du;Lee, Chang Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.447-455
    • /
    • 2006
  • A general purpose of 4-node co-rotational resultant shell element is developed for the solution of nonlinear problems of reinforced concrete, steel and fiber-reinforced composite structures. The formulation of the geometrical stiffness presented here is defined on the mid-surface by using the second order kinematic relations and is efficient for analyzing thick plates and shells by incorporating bending moment and transverse shear resultant forces. The present element is free of shear locking behavior by using the ANS (Assumed Natural Strain) method such that the element performs very well as thin shells. Inelastic behaviour of concrete material is based on the plasticity with strain hardening and elasto-plastic fracture model. The plasticity of steel is based on Von-Mises Yield and Ivanov Yield criteria with strain hardening. The transverse shear stiffness of laminate composite is defined by an equilibrium approach instead of using the shear correction factor. The proposed formulation is computationally efficient and versitile for most civil engineering application and the test results showed good agreement.

An Electron Microscopy of the Retina in the Gallus domesticus B. (家鷄 網膜의 電子顯微鏡的 硏究)

  • Paik, Kyung Ki;Choi, Choon Keun
    • The Korean Journal of Zoology
    • /
    • v.15 no.2
    • /
    • pp.71-85
    • /
    • 1972
  • This investigation was undertaken to establish the ultrastructural organization of the retina in domestic fowl (Gallus domesticus B.) comparing with the ultrastructure that has been indicated in other Aves by several workers. The electron microscope observations were made on selected segments of retinal tissue prefixed for 2 hrs in 1.25% glutaraldehyde buffered with 0.2 M cacodylate at pH 7.2 and then postfixed in cold 1% osmium tetroxide in 0.4 M cacodylate buffer for 2 hrs. After postfixation, tissues were dehydrated in alcohol series, embedded in Epon 812 mixture from propylene oxide and stained with saturated uranyl acetate and $Pb(NO_3)_2$ solution. Specimens were examined with a Hitachi HS-7S electron microscope. The pigment epithelia cells contain numerous mitochondria with prominent dense granules and several changeful spaped Golgi bodies. The internal fine structure of the receptor outer segments revealed the characteristic stacks or arrays of bimembranous disks. The ellipsoid outer portion of the cone inner segments is composed of a tightly packed mass of extraordinarily large mitochondria. The outer limiting membrane is seen to contain many junctional complexes, the fibrillar material of which is electron-dense.

  • PDF

AprilTag and Stereo Visual Inertial Odometry (A-SVIO) based Mobile Assets Localization at Indoor Construction Sites

  • Khalid, Rabia;Khan, Muhammad;Anjum, Sharjeel;Park, Junsung;Lee, Doyeop;Park, Chansik
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.344-352
    • /
    • 2022
  • Accurate indoor localization of construction workers and mobile assets is essential in safety management. Existing positioning methods based on GPS, wireless, vision, or sensor based RTLS are erroneous or expensive in large-scale indoor environments. Tightly coupled sensor fusion mitigates these limitations. This research paper proposes a state-of-the-art positioning methodology, addressing the existing limitations, by integrating Stereo Visual Inertial Odometry (SVIO) with fiducial landmarks called AprilTags. SVIO determines the relative position of the moving assets or workers from the initial starting point. This relative position is transformed to an absolute position when AprilTag placed at various entry points is decoded. The proposed solution is tested on the NVIDIA ISAAC SIM virtual environment, where the trajectory of the indoor moving forklift is estimated. The results show accurate localization of the moving asset within any indoor or underground environment. The system can be utilized in various use cases to increase productivity and improve safety at construction sites, contributing towards 1) indoor monitoring of man machinery coactivity for collision avoidance and 2) precise real-time knowledge of who is doing what and where.

  • PDF

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

Evaluation of Microstructures and Mechanical Properties of Ni-Y2O3 Sintered Alloys Based on the Powder Preparation Methods (분말 제조 방법에 따른 Ni-Y2O3 소결 합금의 미세 구조 및 기계적 특성 평가)

  • Gun-Woo Jung;Ji-Ho Cha;Min-Seo Jang;Minsuk Oh;Jeshin Park
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.484-492
    • /
    • 2023
  • In this study, Ni-Y2O3 powder was prepared by alloying recomposition oxidation sintering (AROS), solution combustion synthesis (SCS), and conventional mechanical alloying (MA). The microstructure and mechanical properties of the alloys were investigated by spark plasma sintering (SPS). Among the Ni-Y2O3 powders synthesized by the three methods, the AROS powder had approximately 5 nm of Y2O3 crystals uniformly distributed within the Ni particles, whereas the SCS powder contained a mixture of Ni and Y2O3 nanoparticles, and the MA powder formed small Y2O3 crystals on the surface of large Ni particles by milling the mixture of Ni and Y2O3. The average grain size of Y2O3 in the sintered alloys was approximately 15 nm, with the AROS sinter having the smallest, followed by the SCS sinter at 18 nm, and the MA sinter at 22 nm. The yield strength (YS) of the SCS- and MA-sintered alloys were 1511 and 1688 MPa, respectively, which are lower than the YS value of 1697 MPa for the AROS-sintered alloys. The AROS alloy exhibited improved strength compared to the alloys fabricated by SCS and conventional MA methods, primarily because of the increased strengthening from the finer Y2O3 particles and Ni grains.

ANALYSIS ON THE EVALUATION OF PROJECT EFFICIENCY BASED ON BUDGET EXECUTION: PLANNED OUTAGE MAINTENANCE (POM) FOR ELECTRICITY POWER PLANT

  • Sungkon Moon;Sangwon Han;Myoungwon Kang
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.66-73
    • /
    • 2011
  • With rapid industrialization, electric power consumption has been increasing every year in Korea and in other countries. The provision of additional power stations to produce more electricity is one possible response to this steady increase in consumption. Another alternative is to improve the efficiency of existing stations through timely and effective maintenance works. Since the construction of a new power plant involves a large amount of capital as well as difficulties in the selection of sites, the improvement of existing power stations' efficiencies is often a preferred solution. Therefore, this paper focuses on maintenance project management to address this issue. Among several types of maintenance works, this paper concentrates on planned outage maintenance (POM). This focus arises from the critical impact of POM on other maintenance work, as well as the entire process of electricity production. Unlike other maintenance work, POM is done on the basis of mid and long-term plans. In addition, only POM works are conducted during the outage of all power plants. To evaluate the efficiency of POM works, budget data relating to 164 POM projects between 2001 and 2008 was collected from 7 sites in South Korea. Data envelopment analysis (DEA) was selected as a methodology for evaluation. From this analysis, comparative study was used to determine the categories of projects that had performed well, and those with the most optimized budget structures. Moreover, through discussion with industry, this research develops a feasible proposed method by which to enhance the efficiency of POM projects.

  • PDF

Study on Discharge Phenomenon Occurring in Transmitting Resonance Coil of Wireless Power Transmission (무선전력전송의 송전 공진코일에서 발생하는 방전현상 연구)

  • Gi-Bum Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.355-360
    • /
    • 2024
  • In this paper, in implementing a 4-coil resonant wireless power transmission system, we studied the discharge phenomenon that occurs at the end of the transmitting resonance coil. Resonant wireless power transmission consists of a power supply coil, a transmitting resonance coil, a power receiving resonance coil, and a load coil. The transmitting resonance coil serves to amplify the magnetic field generated from the power supply coil and transmits it to the front receiving resonance coil. When a high current flows through the power supply coil in order to transmit large power, a high voltage is induced at the end of the transmitting resonance coil. It causes line-to-line discharge. Line-to-line discharge phenomenon damages the transmitter case and renders the transmitter unusable. Therefore, in order to eliminate this line-to-line discharge phenomenon, the voltage induced in the transmitting resonance coil that causes line-to-line discharge was analyzed and a solution was proposed.

Si@C/rGO Composite Anode Material for Lithium Ion Batteries (리튬 이온 전지용 음극으로서의 Si@C/rGO의 합성)

  • Chaehyun Kim;Sung Hoon Kim;Wook Ahn
    • Journal of the Korean Electrochemical Society
    • /
    • v.27 no.2
    • /
    • pp.73-79
    • /
    • 2024
  • As the use of fossil fuels has gradually increased, so has the emission of greenhouse gases such as carbon dioxide, leading to environmental problems. As a result, lithium-ion batteries (LiB) have emerged as the solution to this issue. To manufacture medium to large-sized lithium-ion batteries (LiB), it requires electrodes with high capacity and fast charging capabilities. Silicon (Si) is considered a next-generation anode with high-capacity properties, so, reduced graphene oxide (rGO) was compounded with Si@resorcinol-formaldehyde resin (RF) composite to prevent the volume expansion of Si. It was confirmed that the composite anode prepared exhibited improved capacity and enhanced stability.

Research on Process Technology of Molded Bridge Die on Substrate (MBoS) for Advanced Package (Advanced Package용 Molded Bridge Die on Substrate(MBoS) 공정 기술 연구)

  • Jaeyoung Jeon;Donggyu Kim;Wonseok Choi;Yonggyu Jang;Sanggyu Jang;Yong-Nam Koh
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.2
    • /
    • pp.16-22
    • /
    • 2024
  • With advances of artificial intelligence (AI) technology, the demand is increasing for high-end semiconductors in various places such as data centers. In order to improve the performance of semiconductors, reducing the pitch of patterns and increasing density of I/Os are required. For this issue, 2.5dimension(D) packaging is gaining attention as a promising solution. The core technologies used in 2.5D packaging include microbump, interposer, and bridge die. These technologies enable the implementation of a larger number of I/Os than conventional methods, enabling a large amount of information to be transmitted and received simultaneously. This paper proposes the Molded Bridge die on Substrate (MBoS) process technology, which combines molding and Redistribution Layer (RDL) processes. The proposed MBoS technology is expected to contribute to the popularization of next-generation packaging technology due to its easy adaption and wide application areas.