• Title/Summary/Keyword: large solution

Search Result 2,885, Processing Time 0.029 seconds

A Study on the Analysis Techniques for Big Data Computing (빅데이터 컴퓨팅을 위한 분석기법에 관한 연구)

  • Oh, Sun-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.475-480
    • /
    • 2021
  • With the rapid development of mobile, cloud computing technology and social network services, we are in the flood of huge data and realize that these large-scale data contain very precious value and important information. Big data, however, have both latent useful value and critical risks, so, nowadays, a lot of researches and applications for big data has been executed actively in order to extract useful information from big data efficiently and make the most of the potential information effectively. At this moment, the data analysis technique that can extract precious information from big data efficiently is the most important step in big data computing process. In this study, we investigate various data analysis techniques that can extract the most useful information in big data computing process efficiently, compare pros and cons of those techniques, and propose proper data analysis method that can help us to find out the best solution of the big data analysis in the peculiar situation.

Induced Charge Distribution Using Accelerated Uzawa Method (가속 Uzawa 방법을 이용한 유도전하계산법)

  • Kim, Jae-Hyun;Jo, Gwanghyun;Ha, Youn Doh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.4
    • /
    • pp.191-197
    • /
    • 2021
  • To calculate the induced charge of atoms in molecular dynamics, linear equations for the induced charges need to be solved. As induced charges are determined at each time step, the process involves considerable computational costs. Hence, an efficient method for calculating the induced charge distribution is required when analyzing large systems. This paper introduces the Uzawa method for solving saddle point problems, which occur in linear systems, for the solution of the Lagrange equation with constraints. We apply the accelerated Uzawa algorithm, which reduces computational costs noticeably using the Schur complement and preconditioned conjugate gradient methods, in order to overcome the drawback of the Uzawa parameter, which affects the convergence speed, and increase the efficiency of the matrix operation. Numerical models of molecular dynamics in which two gold nanoparticles are placed under external electric fields reveal that the proposed method provides improved results in terms of both convergence and efficiency. The computational cost was reduced by approximately 1/10 compared to that for the Gaussian elimination method, and fast convergence of the conjugate gradient, as compared to the basic Uzawa method, was verified.

Multi-DNN Acceleration Techniques for Embedded Systems with Tucker Decomposition and Hidden-layer-based Parallel Processing (터커 분해 및 은닉층 병렬처리를 통한 임베디드 시스템의 다중 DNN 가속화 기법)

  • Kim, Ji-Min;Kim, In-Mo;Kim, Myung-Sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.842-849
    • /
    • 2022
  • With the development of deep learning technology, there are many cases of using DNNs in embedded systems such as unmanned vehicles, drones, and robotics. Typically, in the case of an autonomous driving system, it is crucial to run several DNNs which have high accuracy results and large computation amount at the same time. However, running multiple DNNs simultaneously in an embedded system with relatively low performance increases the time required for the inference. This phenomenon may cause a problem of performing an abnormal function because the operation according to the inference result is not performed in time. To solve this problem, the solution proposed in this paper first reduces the computation by applying the Tucker decomposition to DNN models with big computation amount, and then, make DNN models run in parallel as much as possible in the unit of hidden layer inside the GPU. The experimental result shows that the DNN inference time decreases by up to 75.6% compared to the case before applying the proposed technique.

Group Testing Scheme for Effective Diagnosis of COVID-19 (효율적인 코로나19 진단을 위한 그룹검사 체계)

  • Seong, Jin-Taek
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.445-451
    • /
    • 2021
  • Due to the recent spread and increasing damage of COVID-19, the most important measure to prevent infection is to find infected people early. Group testing which introduced half a century ago, can be used as a diagnostic method for COVID-19 and has become very efficient method. In this paper, we review the fundamental principles of existing group testing algorithms. In addition, the sparse signal reconstruction approach proposed by compressed sensing is improved and presented as a solution to group testing. Compressed sensing and group testing differ in computational methods, but are similar in that they find sparse signals. The our simulation results show the superiority of the proposed sparse signal reconstruction method. It is noteworthy that the proposed method shows performance improvement over other algorithms in the group testing schemes. It also shows performance improvement when finding a large number of defective samples.

Permeability Characteristics of Geosynthetics Vertical Barrier Connections for the Prevention of Contaminants Diffusion (오염물질 확산방지를 위한 토목섬유 연직차수벽 연결부의 투수성능 평가)

  • Park, Jeong Jun
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • Purpose: In this study, we used hydrophilic waterstop used in geosynthetics vertical barrier system to evaluate the performance of impermeability under sealing conditions. Method: ASTM D5887 and ASTM D6766 were applied to determine the capability of the connection during the geosynthetics vertical barrier system. Hydrophilic waterstop was saturated in each solution and the weight, thickness, and volume changes were analyzed over elapsed time. Hydrophilic waterstop was installed at the geosynthetics vertical barrier system connection to evaluate the permeability characteristics. Results: As the expansion reaction time of hydrophilic waterstop increased relatively under saline conditions, the decrease in permeability also showed a smaller decrease in fresh water. Furthermore, the method of engagement of the geosynthetics vertical barrier system showed somewhat better performance of the impermeability due to the large pressure resistance caused by the roll joint type than interlock type. Conclusion: In urban pollutants, which can estimate the outflow of pollutants such as oil storage facilities and industrial complexes, proactive response technologies that can prevent the contaminant diffusion can significantly reduce the damage.

A study on the development of a virtual power plant platform for the Efficient operation of small distributed resources (소규모 분산자원의 효율적 운용을 위한 가상발전소 플랫폼 개발)

  • Kim, Hee-Chul;Hong, Ho-Pyo
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.365-371
    • /
    • 2021
  • In this study, The Virtual Power Plant (VPP) solution platform considered in this study minimizes the cost and investment risk associated with the construction of power generation and transmission facilities. In addition, it includes a Demand Response (DR) program operation function to meet consumers' electricity demand. With the introduction of VPP, it is possible to provide more eco-friendly and efficient power by responding to changes in consumer load in real time through existing generators and DR programs without large-scale facility investment in power generation and transmission/distribution sectors. In order to link the communication device to the solar power and ESS linkage device, it is necessary to transmit data in the control/state between the device device and the edge system and develop an IoT device and interworking platform (OneM2M).

Experimental study for application of the punch shear test to estimate adfreezing strength of frozen soil-structure interface

  • Park, Sangyeong;Hwang, Chaemin;Choi, Hangseok;Son, Youngjin;Ko, Tae Young
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.281-290
    • /
    • 2022
  • The direct shear test is commonly used to evaluate the shear behavior of frozen soil-structure interfaces under normal stress. However, failure criteria, such as the Mohr-Coulomb failure criterion, are needed to obtain the unconfined shear strength. Hence, the punch shear test, which is usually used to estimate the shear strength of rocks without confinement, was examined in this study to directly determine the adfreezing strength. It is measured as the shear strength of the frozen soil-structure interface under unconfined conditions. Different soils of silica sand, field sand, and field clay were prepared inside the steel and concrete ring structures. Soil and ring structures were frozen at the target temperature for more than 24 h. A punch shear test was then conducted. The test results show that the adfreezing strength increased with a decrease in the target temperature and increase in the initial water content, owing to the increase in ice content. The adfreezing strength of field clay was the smallest when compared with the other soil specimens because of the large amount of unfrozen water content. The field sand with the larger normalized roughness showed greater adfreezing strength than the silica sand with a lower normalized roughness. From the experiment and analysis, the applicability of the punch shear test was examined to measure the adfreezing strength of the frozen soil-structure interface. To find a proper sample dimension, supplementary experiments or numerical analysis will be needed in further research.

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Electrochemical treatment of cefalexin with Sb-doped SnO2 anode: Anode characterization and parameter effects

  • Ayse, Kurt;Hande, Helvacıoglu;Taner, Yonar
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.513-525
    • /
    • 2022
  • In this study, it was aimed to evaluate direct oxidation of aqueous solution containing cefalexin antibiotic with new generation Sn/Sb/Ni: 500/8/1 anode. The fact that there is no such a study on treatment of cefalexin with these new anode made this study unique. According to the operating parameters evaluation COD graphs showed clearer results compared to TOC and CLX and thus, it was it was chosen as major parameter. Furthermore, pseudo-first degree kd values were calculated from CLX results to show more accurate and specific results. Experimental results showed that after 60 min of electrochemical oxidation, complete removal of COD and TOC was accomplished with 750 mg L-1 KCl, at pH 7, 50 mA cm-2 current density and 1 cm anode-cathode distance. Also, the stability of the Sn/Sb/Ni anode was evaluated by taking SEM and AFM images and XRD analysis before and after of electrochemical oxidation processes. According to the results, it was not occurred too much change on the anode surface even after 300 h of electrolysis. Thus, it was thought that the anode material was not corroded to a large extent. Furthermore, the removal efficiencies were very high for almost all the time and conditions. According to the results of the study, electrochemical oxidation with new generation Sn/Sb/Ni anodes for the removal of cefalexin antibiotic was found very successful and applicable due to require less reaction time complete mineralization and doesn't require pH adjustment step compared to other studies in literature. In future studies, different antibiotic types should be studied with this anode and maybe with real wastewaters to test applicability of the process in treatment of pharmaceutical wastewaters containing antibiotics, in a better way.

A High-efficiency Single-phase Photovoltaic Inverter for High-voltage Photovoltaic Panels (고전압 태양광 패널용 고효율 단상 태양광 인버터)

  • Hyung-Min, Ryu
    • Journal of IKEEE
    • /
    • v.26 no.4
    • /
    • pp.584-589
    • /
    • 2022
  • For DC-AC power conversion from a high-voltage photovoltaic panel to a single-phase grid, the two-stage transformerless inverter with a buck-boost converter followed by a full-bridge inverter is widely used. To avoid an excessive leakage current due to the large parasitic capacitance of the photovoltaic panel, the full-bridge inverter can only adopt the bipolar PWM which results in much higher power loss compared to the unipolar PWM. In order to overcome such a poor efficiency, this paper proposes a new topology in which an IGBT and a diode for circuit isolation are added to the buck-boost converter. The proposed circuit isolation method allows the unipolar PWM in the full-bridge inverter without any increase in the leakage current so that the overall efficiency can be improved. The validity of the proposed solution is verified by computer simulation and power loss calculation.