• Title/Summary/Keyword: large solution

Search Result 2,869, Processing Time 0.033 seconds

Adjustment Program for Large Sparse Geodetic Networks (희박행렬의 기법을 이용한 대규모 측지망의 조정)

  • Lee, Young Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1991
  • This paper presents an overview of a system of computer programs for the solution of a large geodetic network of about 2,000 stations. The system arranges the matrices in systematic sparse form which is applied to observation equations of RR(C)U (Row-wise Representation Complete Unordered) type and to normal equations of RR(U)U (Row-wise Representation Upper Unordered) type. The solution is done by a Modified Cholesky's algorithm in view of large networks. The implementation program are tested in PC-386 by korean new secondary networks, the results show that the sparse techniques are highly useful to geodetic networks in core-storage management and processing time.

  • PDF

A Study on the Precipitation Behavior of $L2_1$-type $Ni_2AlTi$ Phase in B2-Ordered NiAl System (B2-규칙 NiAl계에 $L2_1$$Ni_2AlTi$상의 석출거동에 관한 연구)

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.20 no.4
    • /
    • pp.187-194
    • /
    • 2007
  • A transmission electron microscope (TEM) investigation has been performed on the precipitation of $L2_1$-type $Ni_2AlTi$ phase in B2-ordered NiAl system. The hardness after solution treatment is high in NiAl-Ti alloys suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1$-type $Ni_2AlTi$ precipitates keep a lattice coherency with the NiAl matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of NiAl-$Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.1% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

Precipitation of L21-type Ni2AlTi Phase in B2-type Intermetallic Compounds NiTi (B2형 금속간화합물 NiTi 중에 L21형 Ni2AlTi상의 석출)

  • Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.17 no.8
    • /
    • pp.420-424
    • /
    • 2007
  • Precipitation behavior has been studied in NiTi-based ordered alloy using transmission electron microscopy. The hardness after solution treatment is high in NiTi alloy suggesting the large contribution of solid solution strengthening in this alloy system. However, the amount of age hardening is not large as compared to the large microstructural variations during aging. At the beginning of aging, the $L2_1-type$ $Ni_2AlTi$ precipitates keep a lattice coherency with the NiTi matrix. By longer periods of aging $Ni_2AlTi$ precipitates lose their coherency and change their morphology to the globular ones surrounded by misfit dislocations. Misfit dislocations, which are observed on {100} planes of H-precipitates have the Burgers vector of a <100> with a pure edge type. The lattice misfits of $NiTi-Ni_2AlTi$ system is estimated from the spacings of misfit dislocations to be 1.3% at 1273 K. The lattice misfits decrease with increasing aging temperature in this system.

Manufacturing Large-scale SiNx EUV Pellicle with Water Bath (물중탕을 이용한 대면적 SiNx EUV 펠리클 제작)

  • Kim, Jung Hwan;Hong, Seongchul;Cho, Hanku;Ahn, Jinho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.1
    • /
    • pp.17-21
    • /
    • 2016
  • EUV (Extreme Ultraviolet) pellicle which protects a mask from contamination became a critical issue for the application of EUV lithography to high-volume manufacturing. However, researches of EUV pellicle are still delayed due to no typical manufacturing methods for large-scale EUV pellicle. In this study, EUV pellicle membrane manufacturing method using not only KOH (potassium hydroxide) wet etching process but also a water bath was suggested for uniform etchant temperature distribution. KOH wet etching rates according to KOH solution concentration and solution temperature were confirmed and proper etch condition was selected. After KOH wet etching condition was set, $5cm{\times}5cm$ SiNx (silicon nitride) pellicle membrane with 80% EUV transmittance was successfully manufactured. Transmittance results showed the feasibility of wet etching method with water bath as a large-scale EUV pellicle manufacturing method.

A Procedure for Computing Conduction Time Series Factors for Walls and Roofs with Large Thermal Capacity by Finite Difference Method (열용량이 큰 벽체나 지붕재의 전도시계열 계수를 유한차분법으로 구하는 과정)

  • Byun, Ki-Hong
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.27-36
    • /
    • 2018
  • The purpose of this paper is to apply the numerical solution procedure to compute conduction time series factors (CTSF) for construction materials with large thermal capacities. After modifying the procedure in Ref. [9], it is applied to find the CTSF for the wall type 19 and the roof type 18 of ASHRAE. The response periods for one hr pulse load are longer than 24hrs for these wall and roof. The CTSF generated using modified procedure agree well with the values presented in the ASHRAE handbook. The modified procedure is a general procedure that can be applied to find CTSF for materials with complex structures. For the large thermal capacity materials, it should be checked whether thermal response period of the material is over 24hr or not. With suggested solution procedure, it is easy to check the validity of the CTSF based on 24hr period.

On the Need for Efficient Load Balancing in Large-scale RPL Networks with Multi-Sink Topologies

  • Abdullah, Maram;Alsukayti, Ibrahim;Alreshoodi, Mohammed
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.3
    • /
    • pp.212-218
    • /
    • 2021
  • Low-power and Lossy Networks (LLNs) have become the common network infrastructure for a wide scope of Internet of Things (IoT) applications. For efficient routing in LLNs, IETF provides a standard solution, namely the IPv6 Routing Protocol for LLNs (RPL). It enables effective interconnectivity with IP networks and flexibly can meet the different application requirements of IoT deployments. However, it still suffers from different open issues, particularly in large-scale setups. These include the node unreachability problem which leads to increasing routing losses at RPL sink nodes. It is a result of the event of memory overflow at LLNs devices due to their limited hardware capabilities. Although this can be alleviated by the establishment of multi-sink topologies, RPL still lacks the support for effective load balancing among multiple sinks. In this paper, we address the need for an efficient multi-sink load balancing solution to enhance the performance of PRL in large-scale scenarios and alleviate the node unreachability problem. We propose a new RPL objective function, Multi-Sink Load Balancing Objective Function (MSLBOF), and introduce the Memory Utilization metrics. MSLBOF enables each RPL node to perform optimal sink selection in a way that insure better memory utilization and effective load balancing. Evaluation results demonstrate the efficiency of MSLBOF in decreasing packet loss and enhancing network stability, compared to MRHOF in standard RPL.

Microstructure and Mechanical Properties on Solid Solution Heat Treatment of Al-6Si-2Cu Alloy for Lightweight Automotive (자동차용 Al-6Si-2Cu 합금의 용체화처리에 따른 미세조직 및 기계적 특성 변화)

  • Hong, Seung-Pyo;Kim, Chung-Seok
    • Korean Journal of Materials Research
    • /
    • v.24 no.10
    • /
    • pp.538-542
    • /
    • 2014
  • Microstructural and mechanical characteristics of Al-6Si-2Cu alloy for lightweight automotive parts were investigated. The test specimens were prepared by gravity casting process. Solution heat treatments were applied to as-cast alloys to improve mechanical properties. The microstructure of the gravity casting specimen presents a typical dendrite structure, having a secondary dendrite arm spacing (SDAS) of $37{\mu}m$. In addition to the Al matrix, a large amount of coarsened eutectic Si, $Al_2Cu$ intermetallic phase, and Fe-rich phases were identified. After solution heat treatment, single-step solution heat treatments were found to considerably improve the spheroidization of the eutectic Si phase. Two-step solution treatments gave rise to a much improved spheroidization. The mechanical properties of the two-step solution heat treated alloy have been shown to lead to higher values of properties such as tensile strength and microhardness. Consequentially, the microstructural and mechanical characteristics of Al alloy have been successfully characterized and are available for use with other basic data for the development of lightweight automotive parts.

Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN Composite (상압소결에 의하여 제조된 SiC-AlN 복합체에서의 고용체 형성과 미세구조)

  • Lee, Jong-Kook;Kim, Duk-Jun;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.7
    • /
    • pp.785-792
    • /
    • 1996
  • Formation of Solid Solution and Microstructure in Processureless sintered SiC-AlN compo-site using oxides as a sintering aid at 185$0^{\circ}C$ and 195$0^{\circ}C$ Regardless of SiC/AlN ratio in composition most of sintered specimens showed he complex structure mixed with 2H solid solution and SiC particles. High sintering temperature and large AlN content in starting composition enhanced the formation of 2H solid solution in sintered specimen 2H solid solution showed the spherical shape and core-rim structure. AlN content in the core is higher than that in the rim but SiC content . The size of 2H solid solution on fracture showed the transgranular fracture mode compared with the dispersed SiC particles which showed the intergranular fracture mode.

  • PDF

Effect of Hot Forging Ratio and Solution Treatment Temperature on the Mechanical Properties of Incoloy 825 Alloy (Incoloy 825 합금의 기계적 성질에 미치는 열간 단조비와 용체화 온도의 영향)

  • Kim, D.H.;Park, Y.T.;Son, Y.M.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.5
    • /
    • pp.213-219
    • /
    • 2018
  • This study was carried out to investigate the effect of hot forging ratio and solution treatment temperature on the mechanical properties of incoloy 825 alloy. With an increasing of the hot forging ratio, grain size and range of grain size was decreased. With an increasing of the solution treatment temperature after 90% forging, grain size and range of grain size was increased. Cr carbides and Ti nitrides was precipitated at below $900^{\circ}C$ and volume fraction of precipitate was increased with an decreasing of the solution treatment temperature. With an increasing of the hot forging ratio, hardness, tensile strength and elongation, toughness was increased. With an increasing of the solution treatment temperature after 90% forging, hardness and strength was increased, elongation and toughness was decreased by grain refinement. With an increasing of the forging ratio, effect of solution treatment temperature on the hardness, strength and elongation was small, but on the toughness was large.

A Study on the Sparse Matrix Method Useful to the Solution of a Large Power System (전력계통 해석에 유용한 "스파스"행렬법에 관한 연구)

  • 한만춘;신명철
    • 전기의세계
    • /
    • v.23 no.3
    • /
    • pp.43-52
    • /
    • 1974
  • The matrix inversion is very inefficient for computing direct solutions of the large spare systems of linear equations that arise in many network problems as a large electrical power system. Optimally ordered triangular factorization of sparse matrices is more efficient and offers the other important computational advantages in some applications with this method. The direct solutions are computed from sparse matrix factors instead of a full inverse matrix, thereby gaining a significant advantage is speed and computer memory requirements. In this paper, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the sparse matrix method is superior to the inverse matrix method to solve the linear equations of large sparse networks. In addition, it is shown that the solutions may be applied directly to sove the load flow in an electrical power system. The result of this study should lead to many aplications including short circuit, transient stability, network reduction, reactive optimization and others.

  • PDF