• 제목/요약/키워드: large scale structure of the universe

검색결과 78건 처리시간 0.022초

Cosmic magnetic fields in the large-scale structure of the universe

  • Ryu, Dongsu
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.37-37
    • /
    • 2014
  • Magnetic fields appear to be ubiquitous in astrophysical environments. The existence of magnetic fields in the large-scale structure of the universe has been established through observations of Faraday rotation and synchrotron emission, as well as through recent gamma-ray observations. Yet, the nature and origin of the magnetic fields remains controversial and largely unknown. In this talk, I briefly summarize recent developments in our understanding of the nature and origin of magnetic fields. I also describe a plausible scenario for the origin of the magnetic fields; seed fields were created in the early universe and subsequently amplified during the formation of the large-scale structure of the universe. I then discuss the prospect of observation of magnetic fields in the large-scale structure of the universe.

  • PDF

COSMIC RAYS ACCELERATED AT SHOCK WAVES IN LARGE SCALE STRUCTURE

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.477-482
    • /
    • 2004
  • Shock waves form in the intergalactic space as an ubiquitous consequence of cosmic structure formation. Using N-body/hydrodynamic simulation data of a ACDM universe, we examined the properties of cosmological shock waves including their morphological distribution. Adopting a diffusive shock acceleration model, we then calculated the amount of cosmic ray energy as well as that of gas thermal energy dissipated at the shocks. Finally, the dynamical consequence of those cosmic rays on cluster properties is discussed.

NONTHERMAL COMPONENTS IN THE LARGE SCALE STRUCTURE

  • MINIATI FRANCESCO
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.465-470
    • /
    • 2004
  • I address the issue of nonthermal processes in the large scale structure of the universe. After reviewing the properties of cosmic shocks and their role as particle accelerators, I discuss the main observational results, from radio to $\gamma$-ray and describe the processes that are thought be responsible for the observed nonthermal emissions. Finally, I emphasize the important role of $\gamma$-ray astronomy for the progress in the field. Non detections at these photon energies have already allowed us important conclusions. Future observations will tell us more about the physics of the intracluster medium, shocks dissipation and CR acceleration.

OBSERVATIONAL STATUS OF THE TEXTURE LARGE-SCALE STRUCTURE FORMATION MODEL

  • UMEDA HIDEYUKI;FREESE KATHERINE
    • 천문학회지
    • /
    • 제29권spc1호
    • /
    • pp.23-24
    • /
    • 1996
  • We reexamined CDM texture large-scale structure (LSS) formation model. We confirmed that texture model is consistent with 4-year COBE data both in an open and a critical matter density (${\Omega}_0$ = 1) universes, and then obtained normalization for density perturbation power spectrum. We next compare the power spectrum with LSS observation data. Contrary to the previous literature, we found that texture model matches with these data in an open universe no better than in an ${\Omega}_0$ = 1 universe. We also found that the model is more likely to fit these data in a cosmological constant dominated ($\Lambda-$) universe.

  • PDF

Three Dimensional Numerical Code for the Expanding Flat Universe

  • Min, Kyoung-W.
    • Journal of Astronomy and Space Sciences
    • /
    • 제4권2호
    • /
    • pp.101-106
    • /
    • 1987
  • The current distribution of galaxies may contain clues to the condition of the universe when the galaxies condensed and to nature of the subsequent expansion of the universe. The development of this large scale structure can be studied by employing N-body computer simulations. The present paper describes the code developed for this purpose. The computer code calculates the motion of collisionless matter acting under the force of gravity in an expanding flat universe. The test run of the code shows the error less than 0.5% in 100 iterations.

  • PDF

Understanding our Universe with the REFLEX II cluster survey

  • Chon, Gayoung
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.41.1-41.1
    • /
    • 2014
  • Clusters of galaxies provide unique laboratories to study astrophysical processes on large scales, and are also important probes for cosmology. X-ray observations are still the best way to find and characterise clusters. The extended ROSAT-ESO flux-limited X-ray (REFLEX II) galaxy clusters form currently the largest well-defined and tested X-ray galaxy cluster sample, providing a census of the large-scale structure of the Universe out to redshifts of z-0.4. I will describe the properties of the survey and the X-ray luminosity function, which led to our recent cosmological constraints on omegaM-sigma8. They tighten the previous constraints from other X-ray experiments, showing good agreements with those from the Planck clusters, but some tension exists with the Planck CMB constraints. The second part of my talk will concern the structure of the local Universe, and the study of the first X-ray superclusters. The density of the clusters reveals an under-dense region in the nearby Universe, which has an interesting implication for the cosmological parameters. Using the X-ray superclusters, that are constructed with a physically motivated procedure, I will show environmental aspects that X-ray superclusters provide, and compare to cosmological N-body simulations.

  • PDF

CLUSTERS OF GALAXIES: SHOCK WAVES AND COSMIC RAYS

  • RYU DONGSU;KANG HYESUNG
    • 천문학회지
    • /
    • 제36권3호
    • /
    • pp.105-110
    • /
    • 2003
  • Recent observations of galaxy clusters in radio and X-ray indicate that cosmic rays and magnetic fields may be energetically important in the intracluster medium. According to the estimates based on theses observational studies, the combined pressure of these two components of the intracluster medium may range between $10\%{\~}100\%$ of gas pressure, although their total energy is probably time dependent. Hence, these non-thermal components may have influenced the formation and evolution of cosmic structures, and may provide unique and vital diagnostic information through various radiations emitted via their interactions with surrounding matter and cosmic background photons. We suggest that shock waves associated with cosmic structures, along with individual sources such as active galactic nuclei and radio galaxies, supply the cosmic rays and magnetic fields to the intracluster medium and to surrounding large scale structures. In order to study 1) the properties of cosmic shock waves emerging during the large scale structure formation of the universe, and 2) the dynamical influence of cosmic rays, which were ejected by AGN-like sources into the intracluster medium, on structure formation, we have performed two sets of N-body /hydrodynamic simulations of cosmic structure formation. In this contribution, we report the preliminary results of these simulations.

Faraday Rotation Measurein the Large-Scale Structure II

  • Akahori, Takuya;Ryu, Dong-Su
    • 천문학회보
    • /
    • 제35권1호
    • /
    • pp.83.1-83.1
    • /
    • 2010
  • In the last meeting of KAS, we reported the first statistical study of Faraday rotation measure (RM) in the large-scale structure of the universe using the data of cosmological structure formation simulations. With a turbulence dynamo model for the intergalactic magnetic field (IGMF), we predicted that the root mean square of RM through filaments is \sim 1 rad/m^2. Future radio observatories such as the Square Kilometer Array (SKA) could detect this signal level. However, it is known that the typical foreground galactic RM is a few tens and less than ten rad/m^2 in the low and high galactic latitudes, respectively. So the RM in the large-scale structure could be detected only after the foreground galactic RM is removed. In this talk, we show how we remove the foreground galactic RM and what we obtain from the masked data, by using some noise models and masking techniques. Our results can be used to simulate future RM observations by SKA, and eventually to constrain the origin and evolution of the IGMF in the large-scale structure.

  • PDF