• Title/Summary/Keyword: large pipeline

Search Result 225, Processing Time 0.026 seconds

A Study on the Development of Electric Actuator Control Device for Driving Time Setting Valve Using VHDL (VHDL을 이용한 구동 시간 설정 밸브 전동 엑추에이터 제어 장치 개발에 관한 연구)

  • Kang, Dae-Guk;Choi, Young-Gyu
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.5
    • /
    • pp.452-459
    • /
    • 2020
  • The electric actuator receives the user's command input signal (open/closed/stop), checks the status of various sensors (valve position, rotational force, motor status, etc.)in the actuator, and controls the motor forward/reverse to open and close the valve. It is a device that outputs the current state of an actuator (valve) and is used in various fields such as dams, power plants, water and sewage facilities, and oil pipeline facilities. If an electric actuator is installed in a power plant and a problem occurs during operation, it can cause a large economic loss, so system reliability is vert important. In this study, in order to increase the safety of the electric actuator, the development of an electric actuator control device capable of setting the ON/OFF time in hardware was conducted to solve the reliability problem that may occur in software. In addition, the electric actuator control device development environment was developed using Xilinx's Spartan7 FPGA and Altium tool.

Structural Integrity Evaluation of Large Main Steam Piping by Water Hammering (수격 현상에 근거한 대형 주증기관의 구조건전성 평가)

  • Jo, Jong-Hyun;Lee, Young-Shin;Kim, Yeon-Whan;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1103-1108
    • /
    • 2012
  • A main steam pipe system is a branch pipe that connects a boiler with a turbine. Water hammering analysis is very important for limiting the damage caused to pipe systems by operation conditions. Water hammering created by an unsteady flow in pipeline systems can cause excessive change in pressure, vibration, and noise. The main steam pipe structure should be designed to safely maintain the pressure pulsation and several vibrations under operation environments. This study evaluated the structural integrity of a main steam pipe during suspended and normal operation by using the ASME fatigue life methodology and finite element analysis. In the analysis, water hammering was used for transient analysis. The calculated alternating stress and fatigue stress were compared with the applicable limits of ASME fatigue life. All the evaluation results satisfied the requirements of the ASME fatigue life.

Analysis of Steady Flow by Main Pipe Arrangement in the Water Distributing Pipe Network (배수관망(配水管網)의 간선배치(幹線配置)에 따른 정류(定流)흐름 해석(解析))

  • Lee, Jeung Seok;Park, Ro Sam;Kim, Jee Hak;Choi, Yun Young;Ahn, Seung Seop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.3
    • /
    • pp.73-82
    • /
    • 1999
  • In this study, the optimal analysis for pipe network is performed for the combined ideal pipe network system(CASE 1, CASE 2 and CASE 3) which is composed of 25 nodes, 41 elements, and 1 fixed nodal head with evaluating pressure variation distribution of main and branch in grid composed drainage pipe network. The linear analysis technique used as the analysis method in this study, the KYPIPE being used extensively as the linear technique to design and analysis of pipe network is applied. Firstly, in the analysis of pipe network, the CASE 2 and CASE 3 supply same thing(value) in the result of considering the total flow provided each pipeline, but in the general intension in the case of CASE 2, relative width of supply is more large than CASE 1 and CASE 3. Secondly, in the analysis technique of pipe network, CASE 3 is analysed largest as a result of comparing with same heads, and in the order of their size CASE 2 and CASE 1 were determined but the difference doesn't appear to be obvious. Thirdly, as the result of determining main factor, pressure in the design and analysis of net work. CASE 3 is from Node 3 to 25 than CASE 1 and CASE 2 and it is determined in the order of their size, CASE 2 and CASE 1. Finally, in this study, discharge flow distribution is evaluated in the same condition with 3-type CASE in the case of branch position for designing optimal composed drainage pipe network. As the result of that, branch pipe perform. Therefore, it is thought that the efficient and reasonable management of water supply and sewerage design will be possible if it give all our energies to study at the pipe system design in and out of country in the future.

  • PDF

Stress-strain behaviour of reinforced dredged sediment and expanded polystyrenes mixture under cyclic loading

  • Zhou, Yundong;Li, Mingdong;Wen, Kejun;Tong, Ruiming
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.507-513
    • /
    • 2019
  • Reinforced soil and Expanded Polystyrenes (EPS) mixture (RSEM) is a geomaterial which has many merits, such as light weight, wide strength range, easy for construction, and economic feasibility. It has been widely applied to improve soft ground, solve bridge head jump, fill cavity in pipeline and widen highway. Reutilizing dredged sediment to produce RSEM as earthfill can not only consume a large amount of waste sediment but also significantly reduce the construction cost. Therefore, there is an urgent need understand the basic stress-strain characteristics of reinforced dredged sediment-EPS mixture (RDSEM). A series of cyclic triaxial tests were then carried out on the RDSEM and control clay. The effects of cement content, EPS beads content and confining pressure on the cyclic stress-strain behaviour of RDSEM were analyzed. It is found that the three stages of dynamic stress-strain relationship of ordinary soil, vibration compaction stage, vibration shear stage and vibration failure stage are also applicative for RDSEM. The cyclic stress-strain curves of RDSEM are lower than that of control clay in the vibration compaction stage because of its high moisture content. The slopes of backbone curves of RDSEMs in the vibration shear stage are larger than that of control clay, indicating that the existence of EPS beads provides plastic resistance. With the increase of cement content, the cyclic stress-strain relationship tends to be steeper. Increasing cement content and confining pressure could improve the cyclic strength and cyclic stiffness of RDSEM.

A Consequence Analysis of the Mitigation Impact on Emergency Shut-off Valves for Accidents of Underground Pipelines (사고영향평가를 이용한 지하 매설 배관 사고 시 긴급차단밸브에 의한 피해 범위 감소에 관한 연구)

  • Park, Sang Bae;Lee, Chang Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.2
    • /
    • pp.28-34
    • /
    • 2019
  • A large number of underground pipelines in the Ulsan National Industrial Complex has been constructed to improve the productivity of chemical products and tackle transportation problems. Now, the total of 1,293km of underground pipelines around 62 companies has been installed and operated. Many of underground pipelines have been installed outside of factories. For a past three years, five gas leakage accidents have occurred and the emergency response took up to 8 hours or more. Due to these delay in accidents, second serious accidents might occur and lead to occur damages to adjacent residents. In this study, it is assumed that emergency valve systems are installed under a ground and the efficacy of these is verified. Consequence analysis program was employed to evaluate the mitigation impact of emergency valve systems. The results show that these valve systems are economical and their performances for a mitigation are excellent. The results indicate that the installation of emergency valve systems for underground pipelines should be urgently legislated and performed.

Parallel Structure Design Method for Mass Spring Simulation (질량스프링 시뮬레이션을 위한 병렬 구조 설계 방법)

  • Sung, Nak-Jun;Choi, Yoo-Joo;Hong, Min
    • Journal of the Korea Computer Graphics Society
    • /
    • v.25 no.3
    • /
    • pp.55-63
    • /
    • 2019
  • Recently, the GPU computing method has been utilized to improve the performance of the physics simulation field. In particular, in the case of a deformed object simulation requiring a large amount of computation, a GPU-based parallel processing algorithm is required to guarantee real-time performance. We have studied the parallel structure design method to improve the performance of the mass spring simulation method which is one of the methods of implementing the deformation object simulation. We used OpenGL's GLSL, a graphics library that allows direct access to the GPU, and implemented the GPGPU environment using an independent pipeline, the compute shader. In order to verify the effectiveness of the parallel structure design method, the mass - spring system was implemented based on CPU and GPU. Experimental results show that the proposed method improves computation speed by about 6,000% compared to the CPU Environment. It is expected that the lightweight simulation technology can be effectively applied to the augmented reality and the virtual reality field by using the design method proposed later in this research.

High-Throughput Development of Polymorphic Simple Sequence Repeat Markers Using Two Whole Genome Sequence Data in Peucedanum japonicum

  • Lee, Junki;Joh, Ho Jun;Kim, Nam-Hoon;Lee, Sang-Choon;Jang, Woojong;Choi, Beom Soon;Yu, Yeisoo;Yang, Tae-Jin
    • Plant Breeding and Biotechnology
    • /
    • v.5 no.2
    • /
    • pp.134-142
    • /
    • 2017
  • Resource plants are important and have strong potential for a variety of utilities as crops or pharmaceutical materials. However, most resource plants remain wild and thus their utility for breeding and biotechnology is limited. Molecular markers are useful to initiate genetic study and molecular breeding for these understudied resource plants. We collected various wild collections of Peucedanum japonicum which is indigenous resource plants utilized as oriental medicine and leafy vegetables in Korea. In this study, we produced two independent whole genome sequences (WGSs) from two collections and identified large scale polymorphic simple sequence repeat (pSSR) based on our pipeline to develop SSR markers based on comparison of two WGSs. We identified a total of 452 candidate pSSR contigs. To confirm the accuracy and utility of pSSR, we designed ten SSR primer pairs and successfully applied those to seven collections of P. japonicum. The WGS and pSSR candidates identified in this study will be useful resource for genetic research and breeding purpose for the valuable resource plant, P. japonicum.

SEARCHING FOR TRANSIT TIMING VARIATIONS AND FITTING A NEW EPHEMERIS TO TRANSITS OF TRES-1 B

  • Yeung, Paige;Perian, Quinn;Robertson, Peyton;Fitzgerald, Michael;Fowler, Martin;Sienkiewicz, Frank;Tock, Kalee
    • Journal of The Korean Astronomical Society
    • /
    • v.55 no.4
    • /
    • pp.111-121
    • /
    • 2022
  • Based on the light an exoplanet blocks from its host star as it passes in front of it during a transit, the mid-transit time can be determined. Periodic variations in mid-transit times can indicate another planet's gravitational influence. We investigate 83 transits of TrES-1 b as observed from 6-inch telescopes in the MicroObservatory robotic telescope network. The EXOTIC data reduction pipeline is used to process these transits, fit transit models to light curves, and calculate transit midpoints. This paper details the methodology for analyzing transit timing variations (TTVs) and using transit measurements to maintain ephemerides. The application of Lomb-Scargle period analysis for studying the plausibility of TTVs is explained. The analysis of the resultant TTVs from 46 transits from MicroObservatory and 47 transits from archival data in the Exoplanet Transit Database indicated the possible existence of other planets affecting the orbit of TrES-1 and improved the precision of the ephemeris by one order of magnitude. We now estimate the ephemeris to be (2 455 489.66026 BJDTDB ± 0.00044 d) + (3.0300689 ± 0.0000007) d × epoch. This analysis also demonstrates the role of small telescopes in making precise midtransit time measurements, which can be used to help maintain ephemerides and perform TTV analysis. The maintenance of ephemerides allows for an increased ability to optimize telescope time on large ground-based telescopes and space telescope missions.

EPAR V2.0: AUTOMATED MONITORING AND VISUALIZATION OF POTENTIAL AREAS FOR BUILDING RETROFIT USING THERMAL CAMERAS AND COMPUTATIONAL FLUID DYNAMICS (CFD) MODELS

  • Youngjib Ham;Mani Golparvar-Fard
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.279-286
    • /
    • 2013
  • This paper introduces a new method for identification of building energy performance problems. The presented method is based on automated analysis and visualization of deviations between actual and expected energy performance of the building using EPAR (Energy Performance Augmented Reality) models. For generating EPAR models, during building inspections, energy auditors collect a large number of digital and thermal imagery using a consumer-level single thermal camera that has a built-in digital lens. Based on a pipeline of image-based 3D reconstruction algorithms built on GPU and multi-core CPU architecture, 3D geometrical and thermal point cloud models of the building under inspection are automatically generated and integrated. Then, the resulting actual 3D spatio-thermal model and the expected energy performance model simulated using computational fluid dynamics (CFD) analysis are superimposed within an augmented reality environment. Based on the resulting EPAR models which jointly visualize the actual and expected energy performance of the building under inspection, two new algorithms are introduced for quick and reliable identification of potential performance problems: 1) 3D thermal mesh modeling using k-d trees and nearest neighbor searching to automate calculation of temperature deviations; and 2) automated visualization of performance deviations using a metaphor based on traffic light colors. The proposed EPAR v2.0 modeling method is validated on several interior locations of a residential building and an instructional facility. Our empirical observations show that the automated energy performance analysis using EPAR models enables performance deviations to be rapidly and accurately identified. The visualization of performance deviations in 3D enables auditors to easily identify potential building performance problems. Rather than manually analyzing thermal imagery, auditors can focus on other important tasks such as evaluating possible remedial alternatives.

  • PDF

In-Situ Application of the Steel Pipe jacking with Grouting (그라우팅을 병행한 강관추진공법의 현장 적용성 연구)

  • Jung, Min-Hyung;Lim, Ho-Jung;Shin, Chang-Sub;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.152-160
    • /
    • 2009
  • The pipe jacking method which is a non-excavation method is frequently used due to constructability and economical efficiency in a medium or small-sized pipeline construction. However, jacking process of the method still causes problems that the base ground is disturbed and loosen. These lead to surface settlement, strength decrease and leakage of water. Therefore, this study presents in-situ application of the steel pipe jacking with grouting, and it is that jacking and grouting are progressed simultaneously. To verify this, the steel pipe jacking with grouting and the existing steel pipe jacking have been constructed on the same ground condition. It has been proved that the steel pipe jacking with grouting is in-situ applicable according to results of monitoring surface settlement, in-situ density, GPR geophysical prospecting and large scale direct shear test.