• Title/Summary/Keyword: large electric field

Search Result 377, Processing Time 0.026 seconds

Effect of Boron Content and Temperature on Interactions and Electron Transport in BGaN Bulk Ternary Nitride Semiconductors

  • Bouchefra, Yasmina;Sari, Nasr-Eddine Chabane
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.1
    • /
    • pp.7-12
    • /
    • 2017
  • This work takes place in the context of the development of a transport phenomena simulation based on group III nitrides. Gallium and boron nitrides (GaN and BN) are both materials with interesting physical properties; they have a direct band gap and are relatively large compared to other semiconductors. The main objective of this paper is to study the effect of boron content on the electron transport of the ternary compound $B_xGa_{(1-x)}N$ and the effect of the temperature of this alloy at x=50% boron percentage, specifically the piezoelectric, acoustic, and polar optical scatterings as a function of the energy, and the electron energy and drift velocity versus the applied electric field for different boron compositions ($B_xGa_{(1-x)}N$), at various temperatures for $B_{0.5}Ga_{0.5}N$. Monte carlo simulation, was employed and the three valleys of the conduction band (${\Gamma}$, L, X) were considered to be non-parabolic. We focus on the interactions that do not significantly affect the behavior of the electron. Nevertheless, they are introduced to obtain a quantitative description of the electronic dynamics. We find that the form of the velocity-field characteristic changes substantially when the temperature is increased, and a remarkable effect is observed from the boron content in $B_xGa_{(1-x)}N$ alloy and the applied field on the dynamics of holders within the lattice as a result of interaction mechanisms.

Mechanical Properties for Methyl Cellulose(MC) Ingredient ER Fluids According to the Numbers of the Electrical Field Cycles (전기장 싸이클 수에 따른 MC성분 ER유체의 기계적성질)

  • 김옥삼;박우철
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.4
    • /
    • pp.296-301
    • /
    • 2001
  • Electro-Rheological (ER) fluids belong to a class of colloidal suspensions whose global characteristics can be controlled by the imposition of an appropriate external electrical field upon the fluid domain. The ER fluids for smart hydraulic system are a class of colloidal dispersion which exhibit large reversible changes in their rheological behavior when subjected to external electrical fields. This paper presents experimental results on mechanical properties of an ER fluids subjected to electrical fatigues. As a first step, ER fluid is made of methyl cellulose(MC) ingredient choosing 25% of particle weight-concentration. Following the construction of test for mechanical properties of ER fluid, the shear stress, dynamic yield stress and current density of the ER fluids are experimentally distilled as a function of electric field cycles. The mechanical properties test of operated ER fluids are distilled and compared with those of unused ER fluids.

  • PDF

Evaluation of Discharge Current Employing Generalized Energy Method and Integral Ohm's Law Using Finite Element Method (유한요소법을 이용한 일반화된 에너지법과 옴의 적분법에 의한 방전 전류 계산)

  • Lee, Ho-Young;Kim, Hong-Joon;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.357-361
    • /
    • 2011
  • The terminal current in voltage driven systems is an essential role for characterizing the pattern of electric discharge such as corona, breakdown, etc. Until now, to evaluate this terminal current, Sato's equation has been widely used in areas of high voltage and plasma discharge. Basically Sato's equation was derived by using the energy balance equation and its final form described physical meaning explicitly. To give more general abilities in Sato's equation, we present a generalized approach by directly using the Poynting's theorem incorporating the finite element method. When the magnetic field effect or the time-dependent voltage source is considered, this generalized energy method can be easily applicable to those problems with any dielectric media such as gas, fluid, and solid. As an alternative approach, the integral Ohm's law resulting in small numerical errors has an ability to be applied to multi-port systems. To test the generalized energy method and integral Ohm's law, first, the results from two prosed methods were compared to those from Sato's approach and an analytic solution in parallel plane electrodes. After verification, the generalized method was applied to the tip-sphere electrodes for evaluating the terminal current with three carriers and the Fowler-Nordheim field emission condition. From these results, we concluded that the generalized energy method can be a consistent technique for evaluating the discharge current with various dielectric materials or large magnetic field.

Characteristics of the Electromagnetic Fields Radiated from Stepped Leaders Just Prior to Lightning Return Strokes (계단상 리더에 의해서 방사된 귀환뇌격 직전의 전장과 자장 파형의 특성)

  • 이복희;이동문;정동철;장근철;이승칠;정광희
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.1
    • /
    • pp.35-41
    • /
    • 2003
  • In this paper statistics on the radiation field waveforms produced by stepped leaders just prior to lightning return strokes were described. As a parameter of stepped leader pulse characteristics, the time interval between the final leader pulse and return stroke peak, the pause time between stepped leaders, the ratio of the final leader peak to the return stroke peak and the stepped leader pulse width at half maximum were examined. The average time intervals between the final leader pulse and return stroke peak were about 16.2 and 14.8$mutextrm{s}$ for the positive and negative polarities, respectively. When the stepped leader approaches closely to ground, the time interval between leader steps was decreased and the mean value was about 17$mutextrm{s}$, and the present results were in reasonable agreement with the data observed in Florida and Japan. The large fraction of the ratios of the final stepped leader pulse to the lightning return stroke peak were distributed over the range from 5 to 35% and in average the ratio of the final leader pulse to the return stroke peak was 17.4$\pm$11.9% for the positive and 18.5$\pm$9.4% for the negative electric field waveforms. In addition, the mean pulse widths at half maximum of the stepped leaders are 1.4Us with a standard deviation of 0.9 for the positive Polarity and 2.2us with a standard deviation of 1.2 for the negative polarity, respectively.

Quantitative Evaluation of Free CaO in Electric Arc Furnace Reduction Slag using the Ethylene Glycol Method (에틸렌 글리콜법을 이용한 전기로 환원슬래그의 Free CaO 정량 평가에 관한 연구)

  • Kwon, Seung-Jun;Lim, Hee-Seob;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.4
    • /
    • pp.321-327
    • /
    • 2018
  • Blast furnace slag has been actively used as a substitute for cement in the construction field with high value-added through resource recycling research. However, most of the slag cannot find a clear recycling purpose. This is because some slags contain unstable materials and are used for road-use asphalt and embankment, which are low value-added materials. Electric arc furnace reduction slag(ERS) has been reported to contain a large amount of unstable free CaO due to deoxidation and component adjustment. In this study, free CaO of ERS which is generated in Korean steelmakers is quantitatively evaluated by using ethylene glycol method. As a result of free CaO quantitative evaluation of ERS, it was confirmed that there is a big difference according to the location of each field. In addition, ERS generally existed in powder form as undifferentiated characteristics, but it was confirmed that free CaO content was different due to hydration product in aggregate form due to water treatment. In addition, free CaO is an amorphous material and its crystallization characteristics are different due to the influence of temperature when it is cooled. ERS requires a long-term aging period as it contains a lot of free CaO.

Effect of Ohmic Heating on External and Internal Structure of Starches (옴가열이 전분의 외부와 내부 구조에 미치는 영향)

  • Cha, Yun-Hwan
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.1
    • /
    • pp.126-133
    • /
    • 2015
  • Ohmic heating uses electric resistance heat which occurs equally and rapidly inside food when the electrical current is transmitted into. Prior to the study, we have researched the potato starch's thermal property changes during ohmic heating. Comparing with conventional heating, the gelatinization temperature and the range of potato starch treated by ohmic heating are increased and narrowed respectively. This result is appeared equally at wheat, corn and sweet potato starch. At this study, we treated potato, wheat, corn and sweet potato starch by ohmic/conventional method and observed change of external structure by microscope and internal structure by X-ray diffractometer. Conventional heated at $55^{\circ}C$ potato starch was not external structural changes. But ohmic heated potato starch is showed largely change. Some small size starch particle were broken or small particles are made of larger particle together or small particles caught up in the large particle. Changes in ohmic heated potato starch at $60^{\circ}C$ was greater. The inner matter came to an external particle burst inside and only the husk has been observed. The same change was observed in the rest of the starch. The change of internal structure of potato starch was measured using X-ray diffraction patterns. There was no significant difference between ohmic and conventional heating at $55^{\circ}C$. But almost every peak has disappeared ohmic at $60^{\circ}C$. Especially $5.4^{\circ}$ peak to represent the type B was completely gone. When viewed from the above results, external changes with change in the internal crystal structure of the starch particles were largely unknown to appear. In conclusion, during ohmic heating changes of starch due to the electric field with a change in temperature by the heating was found to have progressed at the same time.

Improved ILDC Formulation for Very Thin Gap/Crack (아주 가는 균열의 산란 해석을 위한 향상된 ILDC 공식)

  • Lee, Hyunsoo;Koh, Il-Suek
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.938-943
    • /
    • 2014
  • The scattered field by a gap/crack on the PEC surface of a large object having low-observable RCS cannot be negligible, but may not be analyzed by the known high-frequency technique. If the electrical width of the crack is very small, the crack can be modeled by an impedance strip, whose scattering formulation can be analytically obtained based on a low-frequency approximation. The scattering solution is formulated for the 2D strip and TE(Transverse Electric) or TM(Transverse Magnetic) wave incidence, from which a 3D ILDC(Incremental Length Diffraction Coefficients) can be extracted. Using the ILDC formulation, the scattering by any arbitrary shaped crack can be estimated. In this paper, an improved ILDC equations are proposed, which combine the known TE and TM solutions. The improved accuracy of the proposed solution is numerically verified.

Research to Achieve Uniform Plasma in Multi-ground Capacitive Coupled Plasma

  • Park, Gi-Jeong;Lee, Yun-Seong;Yu, Dae-Ho;Lee, Jin-Won;Lee, Jeong-Beom;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.247.1-247.1
    • /
    • 2014
  • The capacitive coupled plasma is used widely in the semiconductor industries. Especially, the uniformity of the industrial plasma is heavily related with defect ratio of devices. Therefore, the industries need the capacitive coupled plasma source which can generate the uniform plasma and control the plasma's uniformity. To achieving the uniformity of the large area plasma, we designed multi-powered electrodes. We controlled the uniformity by controlling the power of each electrode. After this work, we started to research another concept of the plasma device. We make the plasma chamber that has multi-ground electrodes imaginary (CST microwave studio) and simulate the electric field. The shape of the multi-ground electrodes is ring type, and it is same as the shape of the multi-power electrodes that we researched before. The diameter of the side electrode's edge is 300mm. We assumed that the plasma uniformity is related with the impedance of ground electrodes. Therefore we simulated the imaginary chamber in three cases. First, we connected L (inductor) and C (capacitor) at the center of multi-ground electrodes. Second, we changed electric conductivity of multi-ground electrode. Third, we changed the insulator's thickness between the center ground electrode and the side ground electrode. The driving frequency is 2, 13.56 and 100 MHz. We switched our multi-powered electrode system to multi-ground electrode system. After switching, we measured the plasma uniformity after installing a variable vacuum capacitor at the ground line. We investigate the effect of ground electrodes' impedance to plasma uniformity.

  • PDF

Fiber optic temperature sensor using evanescent field coupling of the thermo-optic polymer planar waveguide (열광학 폴리머 평면도파로의 소산장결합을 이용한 광섬유형 온도센서)

  • Kim, Si-Hong;Jung, Woong-Gyu;Kim, Kwang-Tack;Song, Jae-Won;Kang, Shin-Won
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.15-21
    • /
    • 2000
  • Optical fiber temperature sensor, using resonance wavelength shifting of single mode fiber-to-planar waveguide coupler by heat, was fabricated. Thermo-optic polymers, have large change of refractive index due to heat, were used for planar waveguide. The device fabrication procedure including fiber polishing steps was illustrated and the device structure with independent polarization was demonstrated experimentally. The resonance wavelength difference of fabricated device was less than 2nm. The resonance wavelength shifting owing to temperature variation, from room temperature($24^{\circ}C$) to $90^{\circ}C$, was showed $-0.54nm/^{\circ}C$, $-3nm/^{\circ}C$.

  • PDF

Coil Gun Electromagnetic Launcher (EML) System with Multi-stage Electromagnetic Coils

  • Lee, Su-Jeong;Kim, Ji-Hun;Song, Bong Sob;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.481-486
    • /
    • 2013
  • An electromagnetic launcher (EML) system accelerates and launches a projectile by converting electric energy into kinetic energy. There are two types of EML systems under development: the rail gun and the coil gun. A railgun comprises a pair of parallel conducting rails, along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail, but the high mechanical friction between the projectile and the rail can damage the projectile. A coil gun launches the projectile by the attractive magnetic force of the electromagnetic coil. A higher projectile muzzle velocity needs multiple stages of electromagnetic coils, which makes the coil gun EML system longer. As a result, the installation cost of a coil gun EML system is very high due to the large installation site needed for the EML. We present a coil gun EML system that has a new structure and arrangement for multiple electromagnetic coils to reduce the length of the system. A mathematical model of the proposed coil gun EML system is developed in order to calculate the magnetic field and forces, and to simulate the muzzle velocity of a projectile by driving and switching the electric current into multiple stages of electromagnetic coils. Using the proposed design, the length of the coil gun EML system is shortened by 31% compared with a conventional coil gun system while satisfying a target projectile muzzle velocity of over 100 m/s.