• Title/Summary/Keyword: large Eddy simulation

Search Result 525, Processing Time 0.031 seconds

Systematic influence of different building spacing, height and layout on mean wind and turbulent characteristics within and over urban building arrays

  • Jiang, Dehai;Jiang, Weimei;Liu, Hongnian;Sun, Jianning
    • Wind and Structures
    • /
    • v.11 no.4
    • /
    • pp.275-289
    • /
    • 2008
  • Large eddy simulations have been performed within and over different types of urban building arrays. This paper adopted three dimensionless parameters, building frontal area density (${\lambda}_f$) the variation degree of building height (${\sigma}_h$), and the staggered degree of building range ($r_s$), to study the systematic influence of building spacing, height and layout on wind and turbulent characteristics. The following results have been achieved: (1) As ${\lambda}_f$ decrease from 0.25 to 0.18, the mean flow patterns transfer from "skimming" flow to "wake interference" flow, and as ${\lambda}_f$ decrease from 0.06 to 0.04, the mean flow patterns transfer from "wake interference" flow to "isolated roughness" flow. With increasing ${\lambda}_f$, wind velocity within arrays increases, and the vortexes in front of low buildings would break, even disappear, whereas the vortexes in front of tall buildings would strengthen and expand. Tall buildings have greater disturbance on wind than low buildings do. (2) All the wind velocity profiles and the upstream profile converge at the height of 2.5H approximately. The decay of wind velocity within the building canopy was in positive correlation with ${\lambda}_f$ and $r_s$. If the height of building arrays is variable, Macdonald's wind velocity model should be modified through introducing ${\sigma}_h$, because wind velocity decreases at the upper layers of the canopy and increases at the lower layers of the canopy. (3) The maximum of turbulence kinetic energy (TKE) always locates at 1.2 times as high as the buildings. TKE within the canopy decreases with increasing ${\lambda}_f$ and $r_s$ but the maximum of TKE are very close though ${\sigma}_h$ varies. (4) Wind velocity profile follows the logarithmic law approximately above the building canopy. The Zero-plane displacement $z_d$ heighten with increasing ${\lambda}_f$, whereas the maximum of and Roughness length $z_0$ occurs when ${\lambda}_f$ is about 0.14. $z_d$ and $z_0$ heighten linearly with ${\sigma}_h$ and $r_s$, If ${\sigma}_h$ is large enough, $z_d$ may become higher than the average height of buildings.

Large eddy simulation on the turbulent mixing phenomena in 3×3 bare tight lattice rod bundle using spectral element method

  • Ju, Haoran;Wang, Mingjun;Wang, Yingjie;Zhao, Minfu;Tian, Wenxi;Liu, Tiancai;Su, G.H.;Qiu, Suizheng
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1945-1954
    • /
    • 2020
  • Subchannel code is one of the effective simulation tools for thermal-hydraulic analysis in nuclear reactor core. In order to reduce the computational cost and improve the calculation efficiency, empirical correlation of turbulent mixing coefficient is employed to calculate the lateral mixing velocity between adjacent subchannels. However, correlations utilized currently are often fitted from data achieved in central channel of fuel assembly, which would simply neglect the wall effects. In this paper, the CFD approach based on spectral element method is employed to predict turbulent mixing phenomena through gaps in 3 × 3 bare tight lattice rod bundle and investigate the flow pulsation through gaps in different positions. Re = 5000,10000,20500 and P/D = 1.03 and 1.06 have been covered in the simulation cases. With a well verified mesh, lateral velocities at gap center between corner channel and wall channel (W-Co), wall channel and wall channel (W-W), wall channel and center channel (W-C) as well as center channel and center channel (C-C) are collected and compared with each other. The obvious turbulent mixing distributions are presented in the different channels of rod bundle. The peak frequency values at W-Co channel could have about 40%-50% reduction comparing with the C-C channel value and the turbulent mixing coefficient β could decrease around 25%. corrections for β should be performed in subchannel code at wall channel and corner channel for a reasonable prediction result. A preliminary analysis on fluctuation at channel gap has also performed. Eddy cascade should be considered carefully in detailed analysis for fluctuating in rod bundle.

Investigation on relative contribution of flow noise sources of ship propulsion system (선박 추진시스템 유동 소음원 상대적 기여도 분석)

  • Ha, Junbeom;Ku, Garam;Cheong, Cheolung;Seol, Hanshin;Jeong, Hongseok;Jung, Minseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.3
    • /
    • pp.268-277
    • /
    • 2022
  • In this study, each component of flow noise source of underwater propeller installed to the scale model of the KVLCC2 is investigated and the effect of each noise source on underwater-radiated noise is quantitatively analyzed. The computation domain is set to be the same as the test section of the large cavitation tunnel in the Korea Research Institute of Ship and Ocean Engineering. First, for the high-resolution computation of flow field which is noise source region, the incompressible multiphase Delayed Detached Eddy Simulation is performed. Based on flow simulation results, the Ffowcs Williams and Hawkings integral equation is used to predict underwater-radiated noise and its validity is confirmed through the comparison with the tunnel experiment result. For the quantitative comparison on the contribution of each noise source, the spectral levels of sound pressure and power levels predicted using propeller tip-vortex cavitation, blade surface and rudder surface as the integral region of noise sources are investigated. It is confirmed that the cavitation which is monopole noise source significantly contributed to the underwater-radiated noise than propeller blades and rudder which is dipole noise source, and the rudder have more contribution than propeller blades due to the influence of the propeller wake.

Three-Dimensional Laboratory Experiments for Tsunami Inundation in a Coastal City (지진해일 범람이 해안도시에 미치는 영향에 대한 3차원 수리모형실험)

  • Kim, Kyuhan;Park, Hyoungsu;Shin, Sungwon;Cox, Daniel T.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.6
    • /
    • pp.400-403
    • /
    • 2012
  • Laboratory experiments were conducted for tsunami inundation to an urban area with large building roughness. The waterfront portion of the city of Seaside which is located on the US Pacific Northwest coast, was replicated in 1/50 scale in the wave basin. Tsunami heights and velocities on the inundated land were measured at approximately 31 locations for one incident tsunami heights with an inundation height of approximately 10 m (prototype) near the shoreline. The inundation pattern and speed were more severe and faster in some areas due to the arrangement of the large buildings. Momentum fluxes along the roads were estimated using measure tsunami inundation heights and horizontal fluid velocities. As expected, the maximum momentum flux was near the shoreline and decreased landward. Inundation heights and momentum flux were slowly decreased through the road with buildings on each side. The results from this study showed that the horizontal inundation velocity is an important factor for the external force of coastal structures.

Numerical Analysis of the Particle Dispersion by the Variation of the Velocity Ratio in a Mixing Layer (혼합층에서 속도비 변화에 따른 입자확산 유동해석)

  • Seo, Tae Won;Kim, Tae Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.3
    • /
    • pp.8-14
    • /
    • 2003
  • The particle dispersion in the turbulent mixing layer has been numerically investigated to clarify the effect of the velocity ratio in the large-scale vortical structures. In this study the LES with subgrid-scale model is employed. The Lagrangian method to predict the particle motion is applied. The particles of 10, 50, 150, 200${\mu}m$ in mean diameter were loaded into the origin of the mixing layer. It is shown that the characteristics of flow and growth rate are strongly dependent on the variation of the velocity ratio. It is also shown the relationship between the Stokes number and the particle dispersion. As a result, in the case of St~1 the particle dispersion is faster than the diffustion of the flow field while in the cases of both St<<1 and St>>1 it is shown that the particle dispersion in lower than the diffusion of the flow filed.

Numerical Simulation of Flow past Forced and Freely Vibrating Cylinder at Low Reynolds Number

  • Jung, Jae Hwan;Nam, Bo Woo;Jung, Dong-Ho
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.165-173
    • /
    • 2017
  • This study aims at validating simulations of the forced and freely vibrating cylinders at Reynolds number of approximately 500 in order to identify the capability of the CFD code, and to establish the analysis process of the vortex-induced vibration (VIV). The direct numerical and large eddy simulations were employed to resolve the various length scales of the vortices, and the morphing technique was used to consider a motion of the circular cylinder. For the forced vibration case, both in- and anti-phase VIV processes were observed regarding the frequency ratio. Namely, when the frequency ratio approaches to unity, the synchronization/lock-in process occurs, leading to substantial increases in drag and lift coefficients. This is strongly linked with the switch in timing of the vortex formation, and this physical tendency is consistent with that of Blackburn and Henderson (J. Fluid Mech., 1999, 385, 255-286) as well as force coefficients. For the free oscillation case, the mass and damping ratio of 50.8 and 0.0024 were considered based on the study of Blackburn et al. (J. Fluid Struct., 2000, 15, 481-488) to allow the direct comparison of simulation results. The simulation results for a peak amplitude of the cylinder and a shedding mode are reasonably comparable to that of Blackburn et al. (2000). Consequently, based on aforementioned results, it can be concluded that numerical methods were successfully validated and the calculation procedure was well established for VIV analysis with reasonable results.

Wind-induced response of open type hyperbolic-parabolic membrane structures

  • Xu, Junhao;Zhang, Yingying;Zhang, Lanlan;Wu, Meng;Zhou, Yi;Lei, Ke;Zhang, Qilin
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.269-278
    • /
    • 2020
  • In this paper, the mechanical characteristics of the open type hyperbolic-parabolic membrane structure under wind load were investigated. First, the numerical simulation of a typical plane membrane structure was performed based on the Large-Eddy Simulation method. The accuracy of the simulation method was validated by the corresponding wind tunnel test results. Then, the wind load shape coefficients of open type hyperbolic-parabolic membrane structures are obtained from the series of numerical calculations and compared with the recommended values in the "Technical Specification for Membrane Structures (CECS 158: 2015). Finally, the influences of the wind directions and wind speeds on the mean wind pressure distribution of open type hyperbolic-parabolic membrane structures were investigated. This study aims to gain a better understanding of the wind-induced response for this type of structure and be useful to engineers and researchers.

Study on the effect of wake on the performance and load of a downstream wind turbine (하류 풍력발전기의 성능 및 하중에 대한 후류영향 연구)

  • Son, Jaehoon;Paek, Insu;Yoo, Neungsoo;Nam, Yoonsu
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.2
    • /
    • pp.98-106
    • /
    • 2014
  • The effect of wake on the performance and load of a downstream wind turbine on a floating platform is investigated with a computer simulation in this study. The floating platform consists of a square platform having a dimension of $200m{\times}200m$ with four 2 MW wind turbines installed. For the simulation, only two wind turbines in series with the wind direction were considered and the floating platform was assumed to be stationary due to its large size. Also, a commercial program based on multi-body dynamics and eddy viscosity wake model was used. It was found from simulation that the power from the downstream wind turbine could be reduced by more than 50% of the power from the upstream wind turbine. However, due to the increase in the turbulence intensity, the power is greater but more fluctuating than the power produced by a wind turbine experiencing the same wind speed without wake. Also, it was found that the load of the down stream wind turbine be comes lower than the load of the upstream wind turbine but higher than the load of a wind turbine experiencing the same wind speed without wake.

Numerical Study on the characteristics of fire driven flow for smoke ventilation system operating in the deeply underground subway station (대심도 지하역사에서의 화재시 급 배기 동작유무에 따른 열 연기 거동 분석)

  • Jang, Yong-Jun;Kim, Hag-Beom;Lee, Chang-Hyun;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.66-72
    • /
    • 2008
  • In this study, transient 3D numerical simulations were performed to analyze the characteristics of fire driven flow for smoke ventilation system operating conditions in the deeply underground subway station. The smoke flow patterns were compared and discussed under smoke fan operating mode and off mode in the platform. Soongsil Univ. station(line number 7)was chosen for simulation which was the one of the deepest underground subway stations in the each lines of Seoul. The geometry for model is 365m in length include railway, 23.5m for width, 47m for depth. Therefore 10,000,000 structured grids were used for fire simulation. The parallel computational method for fast calculation was employed to compute the heat and mass transfer eqn's with 6 CPUs(Intel 3.0GHz Dual CPU, 12Cores) of the linux clustering machine. The fire driven flow was simulated with using FDS code in which LES method was applied. The Heat release rate was 10MW and The Ultrafast model was applied for the growing model of the fire source.

  • PDF

Numerical Investigation on Flow Pattern over Backward-Facing Step for Various Step Angles and Reynolds numbers

  • Lee, Jeong Hu;Nguyen, Van Thinh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.60-60
    • /
    • 2021
  • Investigating Backward-Facing Step(BFS) flow is important in that it is a representative case for separation flows in various engineering flow systems. There have been a wide range of experimental, theoretical, and numerical studies to investigate the flow characteristics over BFS, such as flow separation, reattachment length and recirculation zone. However, most of such previous studies were concentrated only on the perpendicular step angle. In this study, several numerical investigations on the flow pattern over BFS with various step angles (10° ~ 90°) and expansion ratios (1.48, 2 and 3.27) under different Reynolds numbers (5000 ~ 64000) were carried out, mainly focused on the reattachment length. The numerical simulations were performed using an open source 3D CFD software, OpenFOAM, in which the velocity profiles and turbulence intensities are calculated by RANS (Reynolds Averaged Navier-Stokes equation) and 3D LES (Large Eddy Simulation) turbulence models. Overall, it shows a good agreement between simulations and the experimental data by Ruck and Makiola (1993). In comparison with the results obtained from RANS and 3D LES, it was shown that 3D LES model can capture much better and more details on the velocity profiles, turbulence intensities, and reattachment length behind the step for relatively low Reynolds number(Re < 11000) cases. However, the simulation results by both of RANS and 3D LES showed very good agreement with the experimental data for the high Reynolds number cases(Re > 11000). For Re > 11000, the reattachment length is no longer dependent on the Reynolds number, and it tends to be nearly constant for the step angles larger than 30°.) Based on the calibrated and validated numerical simulations, several additional numerical simulations were also conducted with higher Reynolds number and another expansion ratio which were not considered in the experiments by Ruck and Makiola (1993).

  • PDF