Abstract
The effect of wake on the performance and load of a downstream wind turbine on a floating platform is investigated with a computer simulation in this study. The floating platform consists of a square platform having a dimension of $200m{\times}200m$ with four 2 MW wind turbines installed. For the simulation, only two wind turbines in series with the wind direction were considered and the floating platform was assumed to be stationary due to its large size. Also, a commercial program based on multi-body dynamics and eddy viscosity wake model was used. It was found from simulation that the power from the downstream wind turbine could be reduced by more than 50% of the power from the upstream wind turbine. However, due to the increase in the turbulence intensity, the power is greater but more fluctuating than the power produced by a wind turbine experiencing the same wind speed without wake. Also, it was found that the load of the down stream wind turbine be comes lower than the load of the upstream wind turbine but higher than the load of a wind turbine experiencing the same wind speed without wake.