• Title/Summary/Keyword: lane marking detection

Search Result 14, Processing Time 0.021 seconds

Road Surface Marking Detection for Sensor Fusion-based Positioning System (센서 융합 기반 정밀 측위를 위한 노면 표시 검출)

  • Kim, Dongsuk;Jung, Hogi
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.107-116
    • /
    • 2014
  • This paper presents camera-based road surface marking detection methods suited to sensor fusion-based positioning system that consists of low-cost GPS (Global Positioning System), INS (Inertial Navigation System), EDM (Extended Digital Map), and vision system. The proposed vision system consists of two parts: lane marking detection and RSM (Road Surface Marking) detection. The lane marking detection provides ROIs (Region of Interest) that are highly likely to contain RSM. The RSM detection generates candidates in the regions and classifies their types. The proposed system focuses on detecting RSM without false detections and performing real time operation. In order to ensure real time operation, the gating varies for lane marking detection and changes detection methods according to the FSM (Finite State Machine) about the driving situation. Also, a single template matching is used to extract features for both lane marking detection and RSM detection, and it is efficiently implemented by horizontal integral image. Further, multiple step verification is performed to minimize false detections.

Lane Marking Detection of Mobile Robot with Single Laser Rangefinder (레이저 거리 센서만을 이용한 자율 주행 모바일 로봇의 도로 위 정보 획득)

  • Jung, Byung-Jin;Park, Jun-Hyung;Kim, Taek-Young;Kim, Deuk-Young;Moon, Hyung-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.521-525
    • /
    • 2011
  • Lane marking detection is one of important issues in the field of autonomous mobile robot. Especially, in urban environment, like pavement roads of downtown or tour tracks of Science Park, which have continuous patterns on the surface of the road, the lane marking detection becomes more important ability. Although there were many researches about lane detection and lane tracing, many of them used vision sensors mainly to detect lane marking. In this paper, we obtain 2 dimensional library data of 'Intensity' and 'Distance' using one laser rangefinder only. We design a simple classifier and filtering algorithm for the lane detection which uses only one LRF (Laser Range Finder). Allowing extended usage of LRF, this research provides more functionality not only in range finding but also in lane detecting to mobile robots. This work will be technically helpful for robot developers to design more simple and efficient autonomous driving system using LRF.

Detection of Lane Marking Candidates by Using Scale-space (스케일-공간을 이용한 차선 마킹 후보 검출)

  • Yoo, Hyeon-Joong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.4
    • /
    • pp.43-53
    • /
    • 2013
  • Lane marking detection based on a mono camera sensor provides a low cost solution to both ITS (intelligent transportation systems) and DAS (driver assistant systems). A number of methods and implementations have been reported in the literature. However, reliable detection is still an issue. Traditional approaches are mostly based on statistics or Hough transforms. However, the former approaches usually include many irrelevant detection areas, and the latter are not practical because actual lanes are not usually suitable for the approximation with linear or polynomial equations. In this paper, we focus on increasing the reliability of detection by reducing the detection of irrelevant areas while improving the detection of actual lane marking areas, which is usually a tradeoff for most conventional approaches. We use scale-space for that. Through experiments with real images obtained from various environments, we could achieve a significant improvement over traditional approaches.

Lane Detection Techniques - A survey

  • Hoang, Toan Minh;Hong, Hyung Gil;Vokhidov, Husan;Kang, JinKyu;Park, Kang Ryoung;Cho, Hyeong Oh
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1411-1412
    • /
    • 2015
  • Detection of road lanes is an important technology, which is being used in autonomous vehicles from last few years. This method is very helpful and supportive for the drivers to provide them safety and to avoid road accidents. Alot of methods are being used to detect road lane markings. We can categorize them into three major categories: sensor-based, feature-based, and model-based methods. And in this study we give the comprehensive survey on lane marking techniques.

Improving Lane Marking Detection by Combining Horizontal 1-D LoG Filtered Scale Space and Variable Thresholding (수평 1-D LoG 필터링 스케일 공간과 가변적 문턱처리의 결합에 의한 차선 마킹 검출 개선)

  • Yoo, Hyeon-Joong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.85-94
    • /
    • 2012
  • Lane marking detection is essential to both ITS and DAS systems. The objective of this paper is to provide more robust technique for lane marking detection than traditional techniques by using scale-space technique. Variable thresholding that is based on the local statistics may be very effective for detecting such objects as lane markings that have prominent intensities. However, such techniques that only rely on local statistics have limitations containing irrelevant areas as well. We reduce the candidate areas by combining the variable thresholding result with cost-efficient horizontal 1D LoG filtered scale space. Through experiments using practical images, we could achieve significant improvement over the techniques based not only on the variable thresholding but also on the Hough transform that is another very popular technique for this purpose.

Stable and Precise Multi-Lane Detection Algorithm Using Lidar in Challenging Highway Scenario (어려운 고속도로 환경에서 Lidar를 이용한 안정적이고 정확한 다중 차선 인식 알고리즘)

  • Lee, Hanseul;Seo, Seung-Woo
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.158-164
    • /
    • 2015
  • Lane detection is one of the key parts among autonomous vehicle technologies because lane keeping and path planning are based on lane detection. Camera is used for lane detection but there are severe limitations such as narrow field of view and effect of illumination. On the other hands, Lidar sensor has the merits of having large field of view and being little influenced by illumination because it uses intensity information. Existing researches that use methods such as Hough transform, histogram hardly handle multiple lanes in the co-occuring situation of lanes and road marking. In this paper, we propose a method based on RANSAC and regularization which provides a stable and precise detection result in the co-occuring situation of lanes and road marking in highway scenarios. This is performed by precise lane point extraction using circular model RANSAC and regularization aided least square fitting. Through quantitative evaluation, we verify that the proposed algorithm is capable of multi lane detection with high accuracy in real-time on our own acquired road data.

Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane (카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출)

  • Jang, Ho-Jin;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Robust Lane Detection Method Under Severe Environment (악 조건 환경에서의 강건한 차선 인식 방법)

  • Lim, Dong-Hyeog;Tran, Trung-Thien;Cho, Sang-Bock
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.5
    • /
    • pp.224-230
    • /
    • 2013
  • Lane boundary detection plays a key role in the driver assistance system. This study proposes a robust method for detecting lane boundary in severe environment. First, a horizontal line detects form the original image using improved Vertical Mean Distribution Method (iVMD) and the sub-region image which is under the horizontal line, is determined. Second, we extract the lane marking from the sub-region image using Canny edge detector. Finally, K-means clustering algorithm classifi left and right lane cluster under variant illumination, cracked road, complex lane marking and passing traffic. Experimental results show that the proposed method satisfie the real-time and efficient requirement of the intelligent transportation system.

Recognition of Symbolic Road Marking using HOG-SP and Improved Lane Detection (HOG-SP를 이용한 방향지시기호 인식 및 향상된 차선 검출)

  • Lee, Myungwoo;Kwak, Sooyeong;Byun, Hyeran
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.87-96
    • /
    • 2016
  • Recently, there is a need for automatic recognition of a variety of symbols on roads because of activation of information services using digital maps on the Web or mobile devices. This paper proposes a method which automatically recognizes 11 kinds of symbolic road markings on the road surface with HOG-SP(Histogram of oriented Gradients-Split Projection) descriptor and shows improvement of lane position detection with recognized symbolic road markings. With the proposed method, recognition rate of 81.99% has been proven on NAVER road view images and the experiments proves the superiority of proposed method by comparisons with other existing methods. Moreover, this paper shows 7.64% higher lane position detection rate by recognizing road surface marking beforehand than only detecting lanes' positions.

IMAGE PROCESSING TECHNIQUES FOR LANE-RELATED INFORMATION EXTRACTION AND MULTI-VEHICLE DETECTION IN INTELLIGENT HIGHWAY VEHICLES

  • Wu, Y.J.;Lian, F.L.;Huang, C.P.;Chang, T.H.
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.513-520
    • /
    • 2007
  • In this paper, we propose an approach to identify the driving environment for intelligent highway vehicles by means of image processing and computer vision techniques. The proposed approach mainly consists of two consecutive computational steps. The first step is the lane marking detection, which is used to identify the location of the host vehicle and road geometry. In this step, related standard image processing techniques are adapted for lane-related information. In the second step, by using the output from the first step, a four-stage algorithm for vehicle detection is proposed to provide information on the relative position and speed between the host vehicle and each preceding vehicle. The proposed approach has been validated in several real-world scenarios. Herein, experimental results indicate low false alarm and low false dismissal and have demonstrated the robustness of the proposed detection approach.