• Title/Summary/Keyword: lane detect

Search Result 119, Processing Time 0.023 seconds

The course estimation of vehicle using vanishing point and obstacle detection (무한원점을 이용한 주행방향 추정과 장애물 검출)

  • 정준익;최성구;노도환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.126-137
    • /
    • 1997
  • This paper describes the algorithm which can estimate road following direction and deetect obstacle using a monocular vision system. This algorithm can estimate the course of vehicle using the vanishing point properties and detect obstacle by statistical method. The proposed algorithm is composed of four steps, which are lane prediction, lane extraction, road following parameter estimation and obstacle detection. It is designed for high processing speed and high accuracy. The former is achieved by a small area named sub-windown in lane existence area, the later is realized by using connected edge points of lane. We would like to present that the new mehod can detect obstacle using the simple statistical method. The paracticalities of the processing speed, the accuracy of the algorithm and proposing obstacle detection method, have been justified through the experiment applied VTR image of the real road to the algorithm.

  • PDF

Advanced Lane Detecting Algorithm for Unmanned Vehicle

  • Moon, Hee-Chang;Lee, Woon-Sung;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1130-1133
    • /
    • 2003
  • The goal of this research is developing advanced lane detecting algorithm for unmanned vehicle. Previous lane detecting method to bring on error become of the lane loss and noise. Therefore, new algorithm developed to get exact information of lane. This algorithm can be used to AGV(Autonomous Guide Vehicle) and LSWS(Lane Departure Warning System), ACC(Adapted Cruise Control). We used 1/10 scale RC car to embody developed algorithm. A CCD camera is installed on top of vehicle. Images are transmitted to a main computer though wireless video transmitter. A main computer finds information of lane in road image. And it calculates control value of vehicle and transmit these to vehicle. This algorithm can detect in input image marked by 256 gray levels to get exact information of lane. To find the driving direction of vehicle, it search line equation by curve fitting of detected pixel. Finally, author used median filtering method to removal of noise and used characteristic part of road image for advanced of processing time.

  • PDF

Lane Detection based Open-Source Hardware according to Change Lane Conditions (오픈소스 하드웨어 기반 차선검출 기술에 대한 연구)

  • Kim, Jae Sang;Moon, Hae Min;Pan, Sung Bum
    • Smart Media Journal
    • /
    • v.6 no.3
    • /
    • pp.15-20
    • /
    • 2017
  • Recently, the automotive industry has been studied about driver assistance systems for helping drivers to drive their cars easily by integrating them with the IT technology. This study suggests a method of detecting lanes, robust to road condition changes and applicable to lane departure warning and autonomous vehicles mode. The proposed method uses the method of detecting candidate areas by using the Gaussian filter and by determining the Otsu threshold value and edge. Moreover, the proposed method uses lane gradient and width information through the Hough transform to detect lanes. The method uses road lane information detected before to detect dashed lines as well as solid lines, calculates routes in which the lanes will be located in the next frame to draw virtual lanes. The proposed algorithm was identified to be able to detect lanes in both dashed- and solid-line situations, and implement real-time processing where applied to Raspberry Pi 2 which is open source hardware.

Detection of Lane Curve Direction by Using Image Processing Based on Neural Network (차선의 회전 방향 인식을 위한 신경회로망 응용 화상처리)

  • 박종웅;장경영;이준웅
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.178-185
    • /
    • 1999
  • Recently, Collision Warning System is developed to improve vehicle safety. This system chiefly uses radar. But the detected vehicle from radar must be decide whether it is the vehicle in the same lane of my vehicle or not. Therefore, Vision System is needed to detect traffic lane. As a preparative step, this study presents the development of algorithm to recognize traffic lane curve direction. That is, the Neural Network that can recognize traffic lane curve direction is constructed by using the information of short distance, middle distance, and decline of traffic lane. For this procedure, the relation between used information and traffic lane curve direction must be analyzed. As the result of application to sampled 2,000 frames, the rate of success is over 90%.t text here.

  • PDF

Detecting Lane Departure Based on GIS Using DGPS (DGPS를 이용한 GIS기반의 차선 이탈 검지 연구)

  • Moon, Sang-Chan;Lee, Soon-Geul;Kim, Jae-Jun;Kim, Byoung-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.4
    • /
    • pp.16-24
    • /
    • 2012
  • This paper proposes a method utilizing Differential Global Position System (DGPS) with Real-Time Kinematic (RTK) and pre-built Geo-graphic Information System (GIS) to detect lane departure of a vehicle. The position of a vehicle measured by DGPS with RTK has 18 cm-level accuracy. The preconditioned GIS data giving accurate position information of the traffic lanes is used to set up coordinate system and to enable fast calculation of the relative position of the vehicle within the traffic lanes. This relative position can be used for safe driving by preventing the vehicle from departing lane carelessly. The proposed system can be a key component in functions such as vehicle guidance, driver alert and assistance, and the smart highway that eventually enables autonomous driving supporting system. Experimental results show the ability of the system to meet the accuracy and robustness to detect lane departure of a vehicle at high speed.

Efficient Lane Detection Using Histogram Based Segmentation (히스토그램을 이용한 효율적인 차선검출)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.5
    • /
    • pp.1062-1067
    • /
    • 2003
  • A vision system for Intelligent vehicles here. The system exploits the characteristics of the gray level histogram of the road to detect lane markers. Each lane maker is then analyzed using a decision tree, and finally the relations between lane markers are analyzed to create structures defining the lane boundaries. The resulting system also generates images that can be used ae preprocessing stages in lane detection, lane tracking or obstacle detection algorithm. The system runs in realtime ay rates of about 30Hz.

Lane Detection Algorithm for Night-time Digital Image Based on Distribution Feature of Boundary Pixels

  • You, Feng;Zhang, Ronghui;Zhong, Lingshu;Wang, Haiwei;Xu, Jianmin
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.188-199
    • /
    • 2013
  • This paper presents a novel algorithm for nighttime detection of the lane markers painted on a road at night. First of all, the proposed algorithm uses neighborhood average filtering, 8-directional Sobel operator and thresholding segmentation based on OTSU's to handle raw lane images taken from a digital CCD camera. Secondly, combining intensity map and gradient map, we analyze the distribution features of pixels on boundaries of lanes in the nighttime and construct 4 feature sets for these points, which are helpful to supply with sufficient data related to lane boundaries to detect lane markers much more robustly. Then, the searching method in multiple directions- horizontal, vertical and diagonal directions, is conducted to eliminate the noise points on lane boundaries. Adapted Hough transformation is utilized to obtain the feature parameters related to the lane edge. The proposed algorithm can not only significantly improve detection performance for the lane marker, but it requires less computational power. Finally, the algorithm is proved to be reliable and robust in lane detection in a nighttime scenario.

Model-based Curved Lane Detection using Geometric Relation between Camera and Road Plane (카메라와 도로평면의 기하관계를 이용한 모델 기반 곡선 차선 검출)

  • Jang, Ho-Jin;Baek, Seung-Hae;Park, Soon-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.2
    • /
    • pp.130-136
    • /
    • 2015
  • In this paper, we propose a robust curved lane marking detection method. Several lane detection methods have been proposed, however most of them have considered only straight lanes. Compared to the number of straight lane detection researches, less number of curved-lane detection researches has been investigated. This paper proposes a new curved lane detection and tracking method which is robust to various illumination conditions. First, the proposed methods detect straight lanes using a robust road feature image. Using the geometric relation between a vehicle camera and the road plane, several circle models are generated, which are later projected as curved lane models on the camera images. On the top of the detected straight lanes, the curved lane models are superimposed to match with the road feature image. Then, each curve model is voted based on the distribution of road features. Finally, the curve model with highest votes is selected as the true curve model. The performance and efficiency of the proposed algorithm are shown in experimental results.

Real Time Multiple Vehicle Detection Using Neural Network with Local Orientation Coding and PCA

  • Kang, Jeong-Gwan;Oh, Se-Young
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.636-639
    • /
    • 2003
  • In this paper, we present a robust method for detecting other vehicles from n forward-looking CCD camera in a moving vehicle. This system uses edge and shape information to detect other vehicles. The algorithm consists of three steps: lane detection, ehicle candidate generation, and vehicle verification. First after detecting a lane from the template matching method, we divide the road into three parts: left lane, front lane, and right lane. Second, we set the region of interest (ROI) using the lane position information and extract a vehicle candidate from the ROI. Third, we use local orientation coding (LOC) edge image of the vehicle candidate as input to a pretrained neural network for vehicle recognition. Experimental results from highway scenes show the robustness and effectiveness of this method.

  • PDF

A Method for Virtual Lane Estimation based on an Occupancy Grid Map (장애물 격자지도 기반 가상차선 추정 기법)

  • Ahn, Seongyong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.773-780
    • /
    • 2015
  • Navigation in outdoor environments is a fundamental and challenging problem for unmanned ground vehicles. Detecting lane markings or boundaries on the road may be one of the solutions to make navigation easy. However, because of various environments and road conditions, a robust lane detection is difficult. In this paper, we propose a new approach for estimating virtual lanes on a traversable region. Estimating the virtual lanes consist of two steps: (i) we detect virtual road region through road model selection based on traversability at current frame and similarity between the interframe and (ii) we estimate virtual lane using the number of lane on the road and results of previous frame. To improve the detection performance and reduce the searching region of interests, we use a probability map representing the traversability of the outdoor terrain. In addition, by considering both current and previous frame simultaneously, the proposed method estimate more stable virtual lanes. We evaluate the performance of the proposed approach using real data in outdoor environments.