본 연구의 목적은 강릉지역에 대해 산사태 취약성을 GIS와 원격탄사를 이용하여 평가하는 것이다. 이를 위해 산사태 위치는 위성영상 해석 및 현지 조사를 통해 확인되었고, GIS와 원격탐사를 이용하여 지형도, 토양도, 지질도, 선구조도, 토지피복도 등이 수집되고, 처리된 후 공간 데이터베이스로 구축되었다. 확률 기법인 빈도비 모델을 이용하여 산사태와 경사, 경사방향, 곡률, 수계, 지형종류, 토질, 토양모재, 토양배수, 유효토심, 임상종류, 임상경급, 임상영급, 임상밀도, 암상, 토지피복도, 선구조도 등 산사태 발생 요인들과의 관계를 계산하여 빈도비를 구하였다. 그리고 이러한 빈도비를 모두 더하여 산사태 취약성 지수를 계산하였으며, 이러한 취약서 지수를 모두 더하여 취약성도를 작성하였다. 그 결과는 실제 산사태 위치자료를 이용하여 검증 및 교차 검증되었고, 그 검증 결과는 산사태 취약성도와 산사태 위치와 밀접한 관계가 있었다.
The spatial mapping of risk is very useful data in planning for disaster preparedness. This research presents a methodology for making the landslide life risk map in the Boeun area which had considerable landslide damage following heavy rain in August, 1998. We have developed a three-stage procedure in spatial data analysis not only to estimate the probability of the occurrence of the natural hazardous events but also to evaluate the uncertainty of the estimators of that probability. The three-stage procedure consists of: (i)construction of a hazard prediction map of "future" hazardous events; (ii) validation of prediction results and estimation of the probability of occurrence for each predicted hazard level; and (iii) generation of risk maps with the introduction of human life factors representing assumed or established vulnerability levels by combining the prediction map in the first stage and the estimated probabilities in the second stage with human life data. The significance of the landslide susceptibility map was evaluated by computing a prediction rate curve. It is used that the Bayesian prediction model and the case study results (the landslide susceptibility map and prediction rate curve) can be prepared for prevention of future landslide life risk map. Data from the Bayesian model-based landslide susceptibility map and prediction ratio curves were used together with human rife data to draft future landslide life risk maps. Results reveal that individual pixels had low risks, but the total risk death toll was estimated at 3.14 people. In particular, the dangerous areas involving an estimated 1/100 people were shown to have the highest risk among all research-target areas. Three people were killed in this area when landslides occurred in 1998. Thus, this risk map can deliver factual damage situation prediction to policy decision-makers, and subsequently can be used as useful data in preventing disasters. In particular, drafting of maps on landslide risk in various steps will enable one to forecast the occurrence of disasters.
The aim of this study is to evaluate the hazard of landslides at Penang, Malaysia, using a Geographic Information System (GIS) and remote sensing. Landslide locations were identified in the study area from interpretation of aerial photographs and from field surveys. Topographical and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. The factors chosen that influence landslide occurrence were: topographic slope, topographic aspect, topographic curvature and distance from drainage, all from the topographic database; lithology and distance from lineament, taken from the geologic database; land use from TM satellite images; and the vegetation index value from SPOT satellite images. Landslide hazardous area were analysed and mapped using the landslide-occurrence factors by logistic regression model. The results of the analysis were verified using the landslide location data and compared with probabilistic model. The validation results showed that the logistic regression model is better prediction accuracy than probabilistic model.
본 연구의 목적은 2002년 산사태가 많이 발생한 강원도 강릉 지역의 산사태 발생원인에 대해 인공신경망 기법과 GIS를 이용하여 취약성도를 작성 및 이를 검증하는 것이다. 이를 위해 지형도, 토양도, 임상도, 지질도, 토지피복도 등 을 GIS를 이용하여 공간 데이터베이스로 구축하였고, 이러한 데이터베이스로부터, 경사, 경사방향, 곡률, 수계, 지형종 류, 토질, 토양모재, 토양배수, 유효토심, 임상종류, 임상경급, 임상영급, 임상밀도, 암상, 토지피복도, 선구조도 등을 추 출하여 산사태 발생요인으로 이용하였다. 이러한 데이터베이스와 산사태 발생 위치에 대해 인공신경망 기법을 적용하 여 산사태 발생 원인에 대해 상대적인 가중치를 계산하고, 이를 적용하여 산사태 취약성도를 만들었다. 그리고 계산 된 산사태 취약성도는 산사태 발생을 정량적으로 예측하는 비곡선 방법을 이용하여 검증되었다. 이러한 결과는 산사 태 피해 예방을 위한 방재 사업, 국토개발 계획, 건설계획 등에 기초 자료로서 활용될 수 있다.
산사태는 지형, 지질, 임상, 토양 등과 같은 다양한 요인들이 복합적으로 작용하여 발생한다. 따라서 산사태 발생위치와 산사태 유발 요인 사이의 상관관계를 파악할 수 있는 다양한 분석 기법이 사용되고 있으며 본 연구에서는 산사태 위험지역을 정량적으로 예측할 수 있는 효과적인 기법을 제안하고자 퍼지관계 기법과 인공신경망 기법을 이용하여 포항지역의 산사태 취약성을 분석하였다. 취약성 분석을 위해 먼저 산사태 위치를 파악하여 현황도를 작성하였으며, 산사태 발생과 관련 있는 11개의 요인들에 대한 공간 데이터베이스를 구축하였다. 퍼지관계 기법에서는 cosine amplitude method를 이용해 각 요인 별 퍼지 소속 함수 값을 획득하고 퍼지관계 함수 연산을 이용하여 취약성도를 작성하였다. 인공신경망 기법에서는 오류 역전파 알고리즘을 이용하여 산사태와 관련 요인들 간의 상대적 가중치를 결정하고 취약성도를 작성하였다. 두 기법으로 도출된 산사태 취약성도의 ROC(Receiver Operating Characteristic)와 AUC(Area Under the Curve)를 통한 검증 결과는 82.18%와 87.4%로 나타났다. 퍼지 관계 및 인공신경망 기법 모두 높은 예측 정확도를 보여 취약성 분석 기법으로서의 적용 가능성이 있는 것으로 분석되었다. 한편 본 연구지역의 경우 인공신경망 기법이 퍼지관계 기법에 비해 좀 더 나은 예측 정확도를 보이는 것으로 분석되었다.
The rapid climatic changes being caused by global warming are resulting in abnormal weather conditions worldwide, which in some regions have increased the frequency of landslides. This study was aimed to analyze and compare the landslide susceptibility using the Frequency Ratio (FR), Statistical Index, Weight of Evidence, Certainty Factor, and Index of Entropy (IoE) at Woomyeon Mountain in South Korea. Through the construction of a landslide inventory map, 164 landslide locations in total were found, of which 50 (30%) were reserved to validate the model after 114 (70%) had been chosen at random for model training. The sixteen landslide conditioning factors related to topography, hydrology, pedology, and forestry factors were considered. The results were evaluated and compared using relative operating characteristic curve and the statistical indexes. From the analysis, it was shown that the FR and IoE models were better than the other models. The FR model, with a prediction rate of 0.805, performed slightly better than the IoE model with a prediction rate of 0.798. These models had the same sensitivity values of 0.940. The IoE model gave a specific value of 0.329 and an accuracy value of 0.710, which outperforms the FR model which gave 0.276 and 0.680, respectively, to predict the spatial landslide in the study area. The generated landslide susceptibility maps can be useful for disaster and land use planning.
ASTER 위성영상을 이용하여 팽창성 점토광물인 일라이트 인자 추출 및 SVM 통계분석을 통해 산사태 취약성을 평가하였다. 연구지역의 산사태 발생지역은 항공사진 판독 및 현장 조사를 통해 분석하였다. GIS 기반 공간데이터베이스로는 지형도, 토양도, 임상도, ASTER 위성사진을 이용하였다. 수치지형도에서는 경사 및 경사방향, 곡률도, 계곡과의 거리, 도로와의 거리, 토양도에서는 유효토심, 토질, 토양지형, 토양 배수정도 및 토양 모재, 임상도에서는 경급, 영급 및 밀도를 위성사진에서는 일라이트 인자를 추출하였다. 산사태 발생요인 데이터베이스와 SVM 통계분석 및 가중치 계산을 통해 각 요소간의 상관관계 취약성도를 구하였다. AUC 검증 결과 일라이트 인자 적용결과는 76.46%의 예측 정확도를 보였으며 일라이트 인자 미적용 모델은 74.09%의 예측 정확도를 나타내었다. 이는 일라이트 인자가 산사태 취약성도 작성에 있어 중요한 자료로 사용될 수 있음을 나타낸다.
The weight-of-evidence model one of the Bayesian probability model was applied to the task of evaluating landslide susceptibility using GIS. Using the location of the landslides and spatial database such as topography, soil, forest, geology, land use and lineament, the weight-of-evidence model was applied to calculate each factor's rating at Boun area in Korea where suffered substantial landslide damage fellowing heavy rain in 1998, The factors are slope, aspect and curvature from the topographic database, soil texture, soil material, soil drainage, soil effective thickness, and topographic type from the soil database, forest type, timber diameter, timber age and forest density from the forest map, lithology from the geological database, land use from Landsat TM satellite image and lineament from IRS satellite image. Tests of conditional independence were performed for the selection of the factors, allowing the 43 combinations of factors to be analyzed. For the analysis, the contrast value, W$\^$+/and W$\^$-/, as each factor's rating, were overlaid to map laudslide susceptibility. The results of the analysis were validated using the observed landslide locations, and among the combinations, the combination of slope, curvature, topographic, timber diameter, geology and lineament show the best results. The results can be used for hazard prevention and planning land use and construction
Nanehkaran, Yaser A.;Mao, Yimin;Azarafza, Mohammad;Kockar, Mustafa K.;Zhu, Hong-Hu
Geomechanics and Engineering
/
제24권5호
/
pp.407-418
/
2021
Due to the complexity of the causes of the sliding mass instabilities, landslide susceptibility and hazard evaluation are difficult, but they can be more carefully considered and regionally evaluated by using new programming technologies to minimize the hazard. This study aims to evaluate the landslide hazard zonation in the Tabriz region, Iran. A fuzzy logic-based multi-criteria decision-making method was proposed for susceptibility analysis and preparing the hazard zonation maps implemented in MATLAB programming language and Geographic Information System (GIS) environment. In this study, five main factors have been identified as triggering including climate (i.e., precipitation, temperature), geomorphology (i.e., slope gradient, slope aspect, land cover), tectonic and seismic parameters (i.e., tectonic lineament congestion, distribution of earthquakes, the unsafe radius of main faults, seismicity), geological and hydrological conditions (i.e., drainage patterns, hydraulic gradient, groundwater table depth, weathered geo-materials), and human activities (i.e., distance to roads, distance to the municipal areas) in the study area. The results of analyses are presented as a landslide hazard map which is classified into 5 different sensitive categories (i.e., insignificant to very high potential). Then, landslide susceptibility maps were prepared for the Tabriz region, which is categorized in a high-sensitive area located in the northern parts of the area. Based on these maps, the Bozgoosh-Sahand mountainous belt, Misho-Miro Mountains and western highlands of Jolfa have been delineated as risk-able zones.
Rainfall induced landslides is one of the most devastating natural disasters acting on mountainous areas. In Korea, landslide damage areas increase significantly from 1990s to 2000s due to the increase of both rainfall intensity and rainy days in addition with haphazard land development. This study was carried out based on the application of TRIGRS unsaturated (Transient Rainfall Infiltration and Grid-based Regional Slope stability analysis), a Fortran coded, physically based, and numerical model that can predict landslides for areas where are prone to shallow precipitation. Using TRIGRS combining with the geographic information system (GIS) framework, the landslide incident happened on 27th, July 2011 in Mt. Umyeon in Seoul was modeled. The predicted results which were raster maps showed values of the factors of safety on every pixel at different time steps show a strong agreement with to the observed actual landslide scars in both time and locations. Although some limitations of the program are still needed to be further improved, some soil data as well as landslide information are lack; TRIGRS is proved to be a powerful tool for shallow landslide susceptibility zonation especially in great areas where the input geotechnical and hydraulic data for simulation is not fully available.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.