• Title/Summary/Keyword: landing site

Search Result 47, Processing Time 0.029 seconds

A Case Study in the Mars Landing Site Selection for Science Objects

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gi-Hyuk;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.375-380
    • /
    • 2012
  • It is a crucial matter to select a landing site for landers or rovers in planning the Mars exploration. The landing site must have not only a scientific value as a landing site, but also geographical features to lead a safe landing for Mars probes. In this regard, this study analyzed landing site of Mars probes and rovers in previous studies and discussed the adequacy of the landing site to scientific missions. Moreover, this study also examined domestic studies on the Mars. The frameworks of these studies will guide the selection of exploration sites and a landing site when sending Mars probe to the Mars through our own efforts. Additionally, this paper will be used as the preliminary data for selection of exploration site and a landing site.

Analysis of landing site for lander and rover on Moon and Mars

  • Seo, Haingja;Kim, Eojin;Kim, Joo Hyeon;Lee, Joo Hee;Choi, Gihyuk;Sim, Eun-Sup
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.105.1-105.1
    • /
    • 2012
  • Moon and Mars have been explored by landers and rovers. Apollo missions landed five times on Lunar surface, and various rovers, including Curiosity landed and explored Mars. The selection of landing site have to be considered engineering and scientific side: the landing site to be available to land stably? the obstacle is not around the rover such as rocks and pothole? the landing site is valuable with scientific? And then landing site have to be the place which is satisfied two objects. We search the information about landing sites of Moon and Mars, and compile the conditions of landing sites. We expect that these data are useful when the landing site of Moon or Mars for Korean mission is selected.

  • PDF

Two-Dimensional Trajectory Optimization for Soft Lunar Landing Considering a Landing Site

  • Park, Bong-Gyun;Ahn, Jong-Sun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.288-295
    • /
    • 2011
  • This paper addresses minimum-fuel, two-dimensional trajectory optimization for a soft lunar landing from a parking orbit to a desired landing site. The landing site is usually not considered when performing trajectory optimization so that the landing problem can be handled. However, for precise trajectories for landing at a desired site to be designed, the landing site has to be considered as the terminal constraint. To convert the trajectory optimization problem into a parameter optimization problem, a pseudospectral method was used, and C code for feasible sequential quadratic programming was used as a numerical solver. To check the reliability of the results obtained, a feasibility check was performed.

Performance Comparison of Depth Map Based Landing Methods for a Quadrotor in Unknown Environment (미지 환경에서의 깊이지도를 이용한 쿼드로터 착륙방식 성능 비교)

  • Choi, Jong-Hyuck;Park, Jongho;Lim, Jaesung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.9
    • /
    • pp.639-646
    • /
    • 2022
  • Landing site searching algorithms are developed for a quadrotor using a depth map in unknown environment. Guidance and control system of Unmanned Aerial Vehicle (UAV) consists of a trajectory planner, a position and an attitude controller. Landing site is selected based on the information of the depth map which is acquired by a stereo vision sensor attached on the gimbal system pointing downwards. Flatness information is obtained by the maximum depth difference of a predefined depth map region, and the distance from the UAV is also considered. This study proposes three landing methods and compares their performance using various indices such as UAV travel distance, map accuracy, obstacle response time etc.

System for Leveling Landing Surface in Response to Changes in Quadcopter Posture (쿼드콥터 자세 변화에 대응한 착륙 접지면 수평 유지 시스템)

  • Kwon, Yeongkeun;Cheon, Donghun;Hwang, Seonghyeon;Choi, Jiwook;Kang, Hosun;Lee, Jangmyung
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.2
    • /
    • pp.155-163
    • /
    • 2021
  • In this paper, we propose a four 2-link robotic leg landing system that is used for leveling the bottom of the landing system, even when the quadcopter posture is changed. The case of conventional skid type landing gear has a risk when the quadcopter lands on a moving vehicle because the skid type landing gear is tilted to the landing site at this situation. To solve this problem, it is necessary to level the bottom of the landing system when the quadcopter posture is changed in the flight. Therefore, the proposed landing system used a four 2-link robotic leg with leveling method. The leveling method was derived from the method of determining a plane. The superiority of the proposed system was verified with 6-axis stewart platform and real flight experiment, and it shows feasibility of leveling method and proposed landing system.

Vision-based Autonomous Landing System of an Unmanned Aerial Vehicle on a Moving Vehicle (무인 항공기의 이동체 상부로의 영상 기반 자동 착륙 시스템)

  • Jung, Sungwook;Koo, Jungmo;Jung, Kwangyik;Kim, Hyungjin;Myung, Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.4
    • /
    • pp.262-269
    • /
    • 2016
  • Flight of an autonomous unmanned aerial vehicle (UAV) generally consists of four steps; take-off, ascent, descent, and finally landing. Among them, autonomous landing is a challenging task due to high risks and reliability problem. In case the landing site where the UAV is supposed to land is moving or oscillating, the situation becomes more unpredictable and it is far more difficult than landing on a stationary site. For these reasons, the accurate and precise control is required for an autonomous landing system of a UAV on top of a moving vehicle which is rolling or oscillating while moving. In this paper, a vision-only based landing algorithm using dynamic gimbal control is proposed. The conventional camera systems which are applied to the previous studies are fixed as downward facing or forward facing. The main disadvantage of these system is a narrow field of view (FOV). By controlling the gimbal to track the target dynamically, this problem can be ameliorated. Furthermore, the system helps the UAV follow the target faster than using only a fixed camera. With the artificial tag on a landing pad, the relative position and orientation of the UAV are acquired, and those estimated poses are used for gimbal control and UAV control for safe and stable landing on a moving vehicle. The outdoor experimental results show that this vision-based algorithm performs fairly well and can be applied to real situations.

Performance Analysis of Landing Point Designation Technique Based on Relative Distance to Hazard for Lunar Lander (달 착륙선의 위험 상대거리 기반 착륙지 선정기법 성능 분석)

  • Lee, Choong-Min;Park, Young-Bum;Park, Chan-Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.1
    • /
    • pp.12-22
    • /
    • 2016
  • Lidar-based hazard avoidance landing system for lunar lander calculates hazard cost with respect to the desired local landing area in order to identify hazard and designate safe landing point where the cost is minimum basically using slope and roughness of the landing area. In this case, if the parameters are only considered, chosen landing target can be designated near hazard threatening the lander. In order to solve this problem and select optimal safe landing point, hazard cost based on relative distance to hazard should not be considered as well as cost based on terrain parameters. In this paper, the effect of hazard cost based on relative distance to hazard on safe landing performance was analyzed and it was confirmed that landing site designation with two relative distances to hazard results in the best safe landing performance by an experiment using three-dimensional depth camera.

Design Requirement Analysis and Configuration Proposal of a Vertiport for Domestic Applications of the Urban Air Mobility (도심항공 모빌리티(UAM)의 국내 적용을 위한 수직이착륙장 설계 요구조건 분석 및 형상 제안)

  • Ahn, Byeong-Seon;Hwang, Ho-Yon
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.40-51
    • /
    • 2021
  • In this paper, the design requirements was produced by analyzing domestic and foreign regulations of the vertical takeoff and landing site required to operate the urban air mobility (UAM) system in Korea and the size of the take-off and landing pads were defined, and the configuration of vertiport was proposed. First, for the metropolitan area with high population density, pilot locations of the vertical take-off and landing site were selected based on the demonstration routes suggested by the Ministry of Land, Infrastructure and Transport and analyzed the characteristics of each location and determined the number of possible installations of vertiport by measuring each site. After that, variables necessary for the operation of the vertical takeoff and landing area were set, and the hourly, daily, monthly aircraft operating cycle, the number of acceptable people, and efficiency were calculated according to the number of simultaneous operation and the number of stand. Finally, using CATIA, the configurations of the virtual vertiport was created by applying the design requirements.

A Review of the Candidate Areas and Missions for Lunar Landing Sites based on NASA Workshop & Overseas Landing Missions (NASA 워크숍 및 해외 착륙임무에 기반한 달 착륙 후보 지역과 임무에 대한 고찰)

  • Lee, Joohee;Rew, Dong-Young
    • Journal of Space Technology and Applications
    • /
    • v.1 no.3
    • /
    • pp.375-395
    • /
    • 2021
  • Korea plans to send a pathfinder lunar orbiter to the Moon for the first time in August 2022. And according to the 3rd Basic Plan for Space Development Promotion, the plan is to send a lunar lander to the Moon before 2030. The selection of the lunar landing area can be varied depending on the lunar lander's mission, therefore preliminary research on the lunar landing sites is essential for a successful lunar exploration mission design. This paper analyzed the characteristics of major regions among 14 proposed regions using NASA's MoonTrek based on the data on the candidate areas for the major moon landing proposed sites by the NASA workshop in 2018. And we looked into what kind of future moon landing missions are suitable for these areas. We also looked at the importance of lunar Antarctica area through the recent lunar landing areas of Moon landing countries and Artemis plan.