• Title/Summary/Keyword: landing performance

Search Result 232, Processing Time 0.028 seconds

Pre-simulation based Automatic Landing Approach by Waypoint Guidance for Fixed-Wing UAV (사전 시뮬레이션과 점항법 유도를 이용한 고정익 무인기의 자동 착륙 접근)

  • Lee, Jehoon;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.557-564
    • /
    • 2021
  • This paper describes an automatic landing approach algorithm for fixed-wing UAVs using waypoint guidance. The proposed algorithm utilizes simple 2D Dubin's vehicle pre-simulations in planning the waypoints for landing approach. The remaining time to reach the runway is also estimated in the pre-simulation, and it is used for altitude control. The performance of the designed algorithm was verified by simulations and flight tests.

Comparison Study on Take-Off and Landing Flight Test Using Ground Observation and DGPS Method (지상관측법 및 DGPS 기법을 활용한 이/착륙 성능 비행시험 비교)

  • Lee, Sang-Jong;Chang, Jae-Won;Jeon, Byoung-Ho;Seong, Kiej-Jeong;Yeom, Chan-Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.931-938
    • /
    • 2009
  • The flight test is last means of compliance to satisfy airworthiness standards and important to evaluate the performance and safety of the developed aircraft. The flight test technologies are obtained from great numbers of experiences and know-hows and protected. In addition, flight test should be conducted efficiently since its various test conditions and items. Therefore, it is requisite to secure efficient flight test methods. This paper discusses the flight test methods for take-off and landing performance and two kinds of techniques are proposed. By performing real flight tests, they are compared with each other and analyzed through the flight analysis.

Application of neural network for airship take-off and landing system by buoyancy change

  • Chang, Yong-Jin;Woo, Gui-Aee;Kim, Jong-Kwon;Cho, Kyeum-Rae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.333-336
    • /
    • 2003
  • For long time, the takeoff and landing control of airship was worked by human handling. With the development of the autonomous control system, the exact controls during the takeoff and landing were required and lots of methods and algorithms were suggested. This paper presents the result of airship take-off and landing by buoyancy control using air ballonet volume change and performance control of pitch angle for stable flight within the desired altitude. For the complexity of airship's dynamics, firstly, simple PID controller was applied. Due to the various atmospheric conditions, this controller didn’t give satisfactory results. Therefore, new control method was designed to reduce rapidly the error between designed trajectory and actual trajectory by learning algorithm using an artificial neural network. Generally, ANN has various weaknesses such as large training time, selection of neuron and hidden layer numbers required to deal with complex problem. To overcome these drawbacks, in this paper, the RBFN (radial basis function network) controller developed.

  • PDF

Analysis of DGPS Approach and Landing Accuracy using Air Base Precision Approach Radar (비행기지 PAR을 이용한 DGPS 공항 접근 및 착륙 정확도 분석)

  • Koo, Jung;Pyo, Sang-Ho;Kang, Kyeong-Sung;Kim, Ki-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.788-797
    • /
    • 2011
  • This paper analyzes the accuracy on the approach and landing of aircraft to an airport through comparison with airbase Precision Approach Radar and aircraft track data of DGPS equipped in aircraft. The proposed analysis result could be a basis for verifying the possibility that DGPS can be utilized in Airbase precision approach and landing. Position identification capability of widely used commercial DGPS is fairly accurate on latitude and longitude, while there is a slight error for being used in an airbase accurate approach and landing of Category I precision when it comes to altitude. Thus, we tested accuracy by analyzing actual flight track data of high performance aircraft to verify the accuracy of the airbase approach and landing using DGPS. Through the research, we developed instrumentation to compare PAR track data with DGPS track data, which can be used in reducing the number of PAR verification Flight utilizing it as a system measuring PAR accuracy at PAR installation phase.

Trajectory Planning and Fuzzy Controller Design of a Re-entry vehicle on Approach and Landing phase (재진입 비행체의 진입 및 착륙단계 경로 생성 및 퍼지제어기 설계)

  • Min, Chan-Oh;Jo, Sung-Jin;Lee, Dae-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.2
    • /
    • pp.150-159
    • /
    • 2010
  • The approach and landing phase of a re-entry vehicle is composed of Steep Glideslope phase, Circular Flare phase, Flare Maneuver phase. The trajectory planning algorithm with geometric parameters is studied in this paper for on-board trajectory planning. This algorithm generate reference trajectory rapidly considering safe landing of re-entry vehicle. In this paper, the Mamdani Fuzzy PD type controller for longitudinal and lateral control is designed which has robustness of nonlinear system. In addition, the simulation is performed including initial downrange and crossrange errors, and the results shows that the proposed fuzzy logic controller has good performance.

Feasibility Study on Domestic Development of a Precision-Landing System for Korean Military Based on GNSS (위성항법시스템 기반 한국형 군용 정밀착륙체계 국내개발 방향 및 기술타당성 분석)

  • Lee, Keehoon;Ahn, Jongsun;Lee, Young Jae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.762-770
    • /
    • 2013
  • Korean military is currently using and operating a precision approach and landing system, called RAPCON (ASR/PAR), which is imported from overseas. However, drawbacks of this system are operational and cost problems that come along, e.g. straightness of the radio waves, limited ability of narrow searching, lack of interoperability, and high cost of installation and maintenance. Moreover, as the civilian air traffic control uses a similar system compared to the military, the so called DME/VOR/ILS, disturbance between these two systems triggered the consideration of GNSS as alternative system. In this paper, we conduct a research on trends in the field of precise approach and landing systems based on GNSS, analyze weaknesses of GNSS(jamming, fault) and consider possible solutions. Furthermore, we propose the precise approach and landing system based on GNSS to be used by the Korean military as we found it to be also suitable for military purposes. Finally, we examine the benefits of a domestic development with different focuses(development/cost of mass production/operational advantages and potential for increased performance).

Optimal Soft Landing Guidance and Attitude Control for Reusable Launch Vehicles (재사용 발사체를 위한 최적 연착륙 유도 및 자세 제어 연구)

  • Jeon, Ho-Young;Cho, Jun-Hyon;Kim, Jong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.251-257
    • /
    • 2022
  • We formulated the convex optimization based minimum energy soft landing problem for reusable launch vehicles, and obtained the minimum time trajectory via the bisection search. In order to implement the the optimal guidance command and complete the flight control architectures on the soft landing stage, we designed the classical attitude control loops, and formulated and solved the optimal actuator allocation problem. The obtained soft landing guidance performance was analyzed via nonlinear 6-DOF simulation.

Analysis on Biomechanical Differences in Lower Limbs Caused by Increasing Heart Rates During Drop-landing (드롭랜딩 시 심박수 증가에 따른 하지의 생체역학적 차이 분석)

  • Hong, Wan-Ki;Kim, Do-Eun
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.141-147
    • /
    • 2015
  • Objective : This study aimed to understand how increased heart rates at the time of drop landing during a step test would affect biomechanical variables of the lower extremity limbs. Background : Ballet performers do more than 200 landings in a daily training. This training raises the heart rate and the fatigability of the lower extremity limbs. Ballet performance high heart rate can trigger lower extremity limb injury. Method : We instructed eight female ballet dancers with no instability in their ankle joints(mean ${\pm}$ SD: age, $20.7{\pm}0.7yr$; body mass index, $19.5{\pm}1.2kg/m^2$, career duration, $8.7{\pm}2.0yr$) to perform the drop landing under the following conditions: rest, 60% heart rate reserve (HRR) and 80% HRR. Results : First, the study confirmed that the increased heart rates of the female ballet dancers did not affect the working ranges of the knee joints during drop landing but only increased angular speeds, which was considered a negative shock-absorption strategy. Second, 80% HRR, which was increased through the step tests, led to severe fatigue among the female ballet dancers, which made them unable to perform a lower extremity limb-neutral position. Hence, their drop landing was unstable, with increased introversion and extroversion moments. Third, we observed that the increasing 80% HRR failed to help the dancers effectively control ground reaction forces but improved the muscular activities of the rectus femoris and vastus medialis oblique muscles. Fourth, the increasing heart rates were positively related to the muscular activities of the vastus medialis oblique and rectus femoris muscles, and the extroversion and introversion moments. Conclusion/Application : Our results prove that increased HRR during a step test negatively affects the biomechanical variables of the lower extremity limbs at the time of drop landing.

Effect of Mechanical Damping and Electrical Conductivity on the Dynamic Performance of a Novel Electromagnetic Engine Valve Actuator

  • Park, Sang-Shin;Kim, Jin-Ho;Choi, Young;Chang, Jung-Hwan
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.72-74
    • /
    • 2008
  • We investigate the effect of mechanical damping and electrical conductivity on the dynamic performance of a new electromagnetic engine valve actuator that employs a permanent magnet. The key dynamic performance factors are the transition time and the landing velocity of the armature. Two-dimensional dynamic finite element analyses are performed to simulate a coupled system. The results show that mechanical damping and electrical conductivity have similar effects on the dynamic performance of the engine valve actuator. Subsequently, it is possible to replace the role of mechanical damping by controlling the electrical conductivity through the thickness and number of steel core laminations.

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.