• Title/Summary/Keyword: landfill stabilization

Search Result 83, Processing Time 0.023 seconds

토양안정제에 의한 폐기물 매립장 차수재의 수리전도도 특성

  • 임은진;이재영;이복일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.390-393
    • /
    • 2002
  • Many researchers have studied for the barrier liner in the landfill that is mixed with clay mineral, native soils and solidified agent. However, they have a littel but problems for safety construction and maintenance as a bottom liner systems in the landfill. In this paper the authors studied the effects on hydraulic conductivity by electric-chemical ion-exchange agent that is a soil stabilization agent(Sulphonated Oil), The application of the soil stabilization agent to meet the hydraulic conductivity of clay liner in landfill is possible if the additive quantity and a proper reaction time is determined relevantly in the laboratory test.

  • PDF

STABILIZATION AND RECLAMATION OF OLD LANDFILL DISPOSAL SITES

  • Kemper P.E., Charles C.
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1996.12a
    • /
    • pp.87-95
    • /
    • 1996
  • The stabilization and reclamation of old disposal sites is becoming more important as significant numbers of disposal sites are closed and abandoned. This technical paper covers an overview of the key issues and methodologies for stabilizing and constructing facilities on old landfills. The slide portion of this presentation also include photographs showing actual construction activities. The key issues that are prevalent in remediating and closing old landfills are : correcting the stormwater flow, leachate breakout, constructing cover caps, controlling landfill gas migration and odors, cleanup groundwater and stabilizing side slopes. Some key techniques for constructing facilities on old landfills include: use of piling, installation of active landfill gas systems, providing LFG barriers under buildings, using utilidors and flexible utility interfaces and designing for site settlement. This Paper provides proven conceptual methods for solving these problems.

  • PDF

The Effect of Air Injection Quantity on Stabilization of Screened Soil in Aerobic Bioreactor Landfill (호기성 Bioreactor 매립지에 있어서 공기주입량이 선별토사의 안정화에 미치는 영향)

  • Park, Jin-Kyu;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.12 no.1
    • /
    • pp.104-109
    • /
    • 2004
  • In this study, we stabilized the screened soil from landfills by using aerobic bioreactor and evaluated aerobic decomposition of it. Four lab-scale bioreactors (anaerobic and 1 PV/day aeration, 5 PV/day aeration, 10 PV/day aeration) filled with screened soil were operated to investigate the effect of air injection quantity on stabilization of screened soil. In case of aerobic bioreactors, the decomposition of organics in screened soil was higher than anaerobic bioreactor. According to the results of landfill gas and soil respiration test, the air injection quantity of 5 PV/day was most efficient in stabilization of screened soil.

  • PDF

Geophysical Investigation of the change of geological environment of the Nanjido Landfill due to the Stabilization Process (난지도 매립장의 안정화에 따른 지질환경 변화 조사를 위한 지구물리 탐사)

  • Lee, Kie-Hwa;Kwon, Byung-Doo;Rim, Hyoung-Rae;Yang, Jun-Mo
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.2
    • /
    • pp.113-126
    • /
    • 2000
  • We have conducted multiple geophysical surveys to investigate the geoenvironmental change of the Nanjido Landfill due to the stabilization process. Geophyscial surveys are comprized of gravity, magnetic, dipole-dipole electrical and SP methods. Due to the field conditions, surveys were conducted on the top surface of the landfill no.2 and southern border areas in front of landfills. The gravity anomalies obtained on the top surface of the landfill no.2 in 1999 show that the gradient of the anomaly on the central area is decreasing in comparison with that observed four years ago. The complexity of magnetic anomaly pattern it also decreasing. These facts suggest that the stabilization work of the Nanjido landfill makes some progress by compaction process due to repetitive subsidence and refilling. The dipole-dipole electrical resistivity and SP data obtained on the outside of the waterproof wall at the landfill no.1 were severely affected by unsatisfactory surface conditions. On the other hand, the dipole-dipole electrical resistivity profiles obtained on the inside and outside parts of the waterproof wall at the landfill no.2 show the blocking effect of leachate flow by the waterproof wall. Few SP anomalies are observed on the top and side surfaces of the landfill no.2, but SP anomalies obtained on the base area inside the waterproof wall strongly reflect the effect of leachate collecting wells.

  • PDF

Characteristics of Desiccation on the Stabilized Layer in Waste Landfill (쓰레기 매립지에서 표층고화처리층의 건조수축특성)

  • 천병식;임종윤;최창현;차용혁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.301-308
    • /
    • 1999
  • With the shortage of the land and NIMBY syndrome, it is issued recently that the capacity of waste-landfill site is needed though the decreasing tendency of waste landfill. From this point, the stability is the most essential problem in the landfill that will be constructed. Advanced design and construction are most important for that. In this paper, for the study of desiccation, dry-shrinkage crack from drying and chemical reaction in cement hydration, which is occurred when the surface layer stabilization method is applied in wast landfill, laboratory test of the ground and specimen according to the mixture ratio of stabilizer is performed. From the result, it is notified that the uni-axial strength increases with the stabilizer, but dry-shrinkage increases too, therefore, it is important and the goal of this study to find the optimal mixture ratio of each stabilizer. Analysis of variance for regression with acting variables is performed to find optimal mixture ratio of each stabilizer.

  • PDF

Analysis of collection Characteristics of Landfill Gas Using ]Relative Fluid Permeability of Gas and Water in Waste Landfill (쓰레기 매립지에서 가스-물 상대유체투과도를 적용한 매립가스의 포집특성분석)

  • 김인기;허대기;김현태;김세준;성원모
    • Journal of Korea Soil Environment Society
    • /
    • v.5 no.3
    • /
    • pp.35-54
    • /
    • 2001
  • It is difficult to accurately predict each flow rate of landfill gas and leachate extracted from many of wells, which have been completed into a waste landfill containing gas and water. However it may be approximately predicted if we can define only relative fluid permeability of gas and leachate flowing through landfill porous media. Therefore numerical simulation using multi-phase flow equations makes use of ei s input data of the relative permeability which is measured and calculated in laboratory environment like in-situ, and consequently we can quantitatively obtain each flow rate of gas and leachate from collection wells. These series of technologies can provide with the important informations to determine the success or failure of landfill gas energy and landfill stabilization. This paper analyses the characteristics of landfill gas collection by six classes of case studies for none described landfill.

  • PDF

A Study on Methanogenic Bacteria-Activated Leachate Recirculation Method for Enhancing Waste Stabilization and Landfill Gas Production from a Solid waste Landfill (매립가스 발생량 및 폐기물 안정화 촉진을 위한 메탄생성균 활성 침출수 재순환 공법에 관한 연구)

  • Park, Jin-Kyu;Kang, Jeong-Hee;Chong, Yong-Gil;Lee, Nam-Hoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.20 no.2
    • /
    • pp.66-75
    • /
    • 2012
  • The objective of this study was to assess the effects of methanogenic bacteria-activated leachate recirculation method for enhancing waste stabilization and landfill gas production from a solid waste landfill. To simulate a conventional landfill (Lys-A), a landfill recirculated only fresh leachate (Lys-B), and two landfills recirculated leachate after pretreating with ASBR (Lys-C and Lys-D), four lysimeters were operated over a period of 4 years. Lys-D was recirculated two times of pretreated leachate volume than that of Lys-C. In the case of the landfill recirculated only fresh leachate and the landfill recirculated leachate after pretreating with ASBR, methane productions were increased until about 600 days, but there were not effect of leachate recirculation for enhancing methane production after about 600 days. It was assumed that leachate recirculation into fewer biodegradable organic wastes had not effect to enhance landfill gas production. Lys-C and Lys-D showed the highest performance for enhancing cumulative methane yield as well as acceleration waste stabilization. In cumulative methane yield, Lys-C (35.51 mL $CH_4/g$ VS) and Lys-D (36.12 mL $CH_4/g$ VS) were much higher than Lys-A (28.37 mL $CH_4/g$ VS) and Lys-B (30.07 mL $CH_4/g$ VS). In case of between Lys-B and Lys-C with the same recirculation rate, COD concentration in Lys-C was more rapidly decreased compared with that in Lys-B. This was attributed to the presence of methanogenic bacteria as well as dilution of inhibitory substances by the methanogenic bacteria-activated leachate recirculation. Therefore, the landfill recirculated leachate after pretreating with ASBR was found to be the most appropriate operating techniques for enhancing waste stabilization and landfill gas production.

Analysis for the Distribution of the Heat Generated on a Nanji Waste Landfill in Using Landsat TM Image (LANDSAT TM 영상에 의한 난지도 매립지의 발생열 분포해석)

  • Yang, I.T.;Kim, M.D.;Yun, B.H.;Kim, Y.J.
    • Journal of Environmental Impact Assessment
    • /
    • v.4 no.2
    • /
    • pp.59-70
    • /
    • 1995
  • The solution-state of a reclaimed waste would be known to the method in using an analysis for seepage. But it is not the best method in the huge landfill reclaimed all kinds of the waste at random. Especially in case of the landfill called the Nan Gi-do located along the Han-river, it is difficult to judge the generative seepage to be flowed in to the Han-river. So to plan the effective stabilization on a landfill, it is very useful survey method using the Landsat TM image. Operating a heat-distribution analysis with the Landsat TM image, in case of a landfill not having definite data, we would assume the reclaimed sections of the waste to judge a solution-speed late comparatively such as a industry waste or a harmful waste through the heat change.

  • PDF

Stabilization of Solid Waste in Lysimeter by Air Injection Mode (공기주입 방식을 이용한 매립모형조내 폐기물 안정화)

  • Kim, Kyung;Park, Joon-Seok;Lee, Hwan;Lee, Cheol-Hyo;Kim, Joung-Dae
    • Journal of Environmental Health Sciences
    • /
    • v.31 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • This study was conducted to evaluate air injection mode on stabilization of solid waste in lysimeter. For three lysimeters, one was maintained under anaerobic condition as control, and air was injected into two lysimeters in continuous mode (atmospheric pressure) and intermittent mode (high pressure of 2 bar). Distilled water was sprayed over solid waste in 1.4 l/$m^3$(solid waste)/day, supposing rainfall intensity of 1,200 mm/yr and 30% infiltration. Oxygen in landfill gas was not detected in control lysimeter during operational days. After 30 day-aeration, oxygen concentrations of continuous and intermittent modes were maintained in 14% and 6%, respectively. $COD_{Cr}$ removal efficiencies of continuous and intermittent modes were about 70% and 50%, and BOD5 removal efficiencies were about 80% and 20%, respectively. In view of oxygen supply, and $COD_{Cr}$ and $BOD_5$ removal, continuous air injection mode of atmospheric pressure was more effective than intermittent mode of 2 bar. Settling degree of solid waste in case of two air injection modes was 3 times higher than that of anaerobic condition as control. Considering the above results, it was thought that air injection (especially continuous atmospheric pressure) could improve degradation of solid waste and induce preliminary stabilization in landfill site.

Treatment, Disposal and Beneficial Use Option for Sewage Sludge (하수슬러지 처리기술 동향 및 최적화 처리방안)

  • Choe, Yong-Su
    • 수도
    • /
    • v.24 no.5 s.86
    • /
    • pp.29-44
    • /
    • 1997
  • Sewage sludge produced in Korea was 1,275,800 tons (dewatered sludge cake) per year in 1996, which is 3,495 tons per day, 0.303% of 11,526,100 tons per day of sewage treated in 79 sewage treatment plants. Sludge production has been and will be increasing in accordance with construction of new facilities for sewage treatment. Most of the sludge is currently disposed by landfill and ocean dumping, but it is becoming difficult to find suitable sites for landfill, particularly in big cities such as Seoul. In addition, rapid increase of landfill cost is anticipated in a near future. Current trend for sludge disposal in advanced countries is land application. Over the past 10 to 20 years in the United States, sludge management practices have changed significantly, moving from disposal to beneficial use. They use biosolid for utilization instead of sludge for disposal. Under the Clean Water Act of 1972, amended in 1987 by Congress, the U.S. EPA was required to develop regulations for the use and disposal of sewage sludge. The EPA assessed the potential for pollutants in sewage sludge to affect public health and the environment through a number of different routes of exposure. The Agency also assessed the potential risk to human health through contamination of drinking water sources or surface water when sludge is disposed on land. The Final Rules were signed by the EPA Administrator and were published (Federal Register, 1993). These rules state that sewage sludge shall not be applied to land if the concentration of any pollutant in the sludge exceeds the ceiling concentration. In addition, the cumulative loading rate for each pollutant shall not exceed the cumulative pollutant loading rate nor should the concentration of each pollutant in the sludge exceed the monthly average concentration for the pollutant. The annual pollutant loading rate generally applies to applications of sewage sludge on agricultural lands. The most popular beneficial use of sewage sludge is land application. The sludge has to be stabilized for appling to land. One of the stabilization process for sewage sludge is lime stabilization process. The stabilization process is consisted of the stabilizing process and the drying process. Stabilization reactor can be a drum type reactor in which a crossed mixer is equipped. The additive agents are a very reactive mixture of calcium oxide and others. The stabilized sludge is dried in sun drier or rotary kiln.

  • PDF