• Title/Summary/Keyword: land-use/cover

Search Result 523, Processing Time 0.024 seconds

Spatial Analyses and Modeling of Landsacpe Dynamics (지표면 변화 탐색 및 예측 시스템을 위한 공간 모형)

  • 정명희;윤의중
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.227-240
    • /
    • 2003
  • The primary focus of this study is to provide a general methodology which can be utilized to understand and analyze environmental issues such as long term ecosystem dynamics and land use/cover change by development of 2D dynamic landscape models and model-based simulation. Change processes in land cover and ecosystem function can be understood in terms of the spatial and temporal distribution of land cover resources. In development of a system to understand major processes of change and obtain predictive information, first of all, spatial heterogeneity is to be taken into account because landscape spatial pattern affects on land cover change and interaction between different land cover types. Therefore, the relationship between pattern and processes is to be included in the research. Landscape modeling requires different approach depending on the definition, assumption, and rules employed for mechanism behind the processes such as spatial event process, land degradation, deforestration, desertification, and change in an urban environment. The rule-based models are described in the paper for land cover change by natural fires. Finally, a case study is presented as an example using spatial modeling and simulation to study and synthesize patterns and processes at different scales ranging from fine-scale to global scale.

  • PDF

Impacts of Land Cover Change of Tidal Flats on Local Meteorology in Gyeonggi Bay, West Sea of Korea (경기만 갯벌의 지표면 토지피복 변화가 국지기상에 미치는 영향 평가)

  • An, Hye Yeon;Kim, Yoo-Keun;Jeong, Ju-Hee
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.399-409
    • /
    • 2017
  • The impact of land cover changed by tidal flats on local meteorology in Gyeonggi Bay was quantitatively evaluated based on a numerical modeling approach during 18 days (21 June to 9 July 2013). The analysis was carried out using three sets of simulation scenarios and the land cover of tidal flats for each simulation was applied as follows: (1) the herbaceous wetland representing coastal wetlands (i.e., EXP-BASE case), (2) the barren or sparsely vegetated representing low tide (i.e., EXP-LOW case), (3) the water bodies representing high tide (i.e., EXP-HIGH case). The area of tidal flats was calculated as about $552km^2$ (the ratio of 4.7% for analysis domain). During the daytime, the change (e.g. wetlands to water) of land cover flooded by high tide indicated the decrease of temperature (average $3.3^{\circ}C$) and the increase of humidity (average 13%) and wind speed (maximum $2.9m\;s^{-1}$). The changes (e.g. wetlands to barren or sparsely vegetated) of land cover induced by low tide were smaller than those by high tide. On the other hands, the effects of changed land cover at night were not apparent both high tide and low tide. Also, during the high tide, the meteorological change in tidal flats affected the metropolitan area (about 40 km from the tidal flat).

A Study on the Land Cover Classification and Cross Validation of AI-based Aerial Photograph

  • Lee, Seong-Hyeok;Myeong, Soojeong;Yoon, Donghyeon;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.395-409
    • /
    • 2022
  • The purpose of this study is to evaluate the classification performance and applicability when land cover datasets constructed for AI training are cross validation to other areas. For study areas, Gyeongsang-do and Jeolla-do in South Korea were selected as cross validation areas, and training datasets were obtained from AI-Hub. The obtained datasets were applied to the U-Net algorithm, a semantic segmentation algorithm, for each region, and the accuracy was evaluated by applying them to the same and other test areas. There was a difference of about 13-15% in overall classification accuracy between the same and other areas. For rice field, fields and buildings, higher accuracy was shown in the Jeolla-do test areas. For roads, higher accuracy was shown in the Gyeongsang-do test areas. In terms of the difference in accuracy by weight, the result of applying the weights of Gyeongsang-do showed high accuracy for forests, while that of applying the weights of Jeolla-do showed high accuracy for dry fields. The result of land cover classification, it was found that there is a difference in classification performance of existing datasets depending on area. When constructing land cover map for AI training, it is expected that higher quality datasets can be constructed by reflecting the characteristics of various areas. This study is highly scalable from two perspectives. First, it is to apply satellite images to AI study and to the field of land cover. Second, it is expanded based on satellite images and it is possible to use a large scale area and difficult to access.

Analysis of Land Use Change Impact on Storm Runoff in Anseongcheon Watershed

  • Park, Geun-Ae;Jung, In-Kyun;Lee, Mi-Seon;Shin, Hyung-Jin;Park, Jong-Yoon;Kim, Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The purpose of this study is to evaluate the hydrological impact due to temporal land cover change by gradual urbanization of upstream watershed of Pyeongtaek gauging station of Anseong-cheon. WMS HEC-1 was adopted, and OEM with 200 m resolution and hydrologic soil group from 1:50,000 scale soil map were prepared. Land covers of 1986, 1990, 1994 and 1999 Landsat TM images were classified by maximum likelihood method. The watershed showed a trend that forest & paddy areas decreased and urban/residential area gradually increased during the four selected years. The model was calibrated at 2 locations (Pyeonglaek and Gongdo) by comparing observed with simulated discharge results for 5 summer storm events from 1998 to 2001. The watershed average CN values varied from 61.7 to 62.3 for the 4 selected years. To identify the impact of streamflow by temporal area change of a target land use, a simple evaluation method that the CN values of areas except the target land use are unified as one representative CN value was suggested. By applying the method, watershed average CN value was affected in the order of paddy, forest and urban/residential, respectively.

Comparative Study on the Accuracy of Surface Air Temperature Prediction based on selection of land use and initial meteorological data (토지이용도와 초기 기상 입력 자료의 선택에 따른 지상 기온 예측 정확도 비교 연구)

  • Hae-Dong Kim;Ha-Young Kim
    • Journal of Environmental Science International
    • /
    • v.33 no.6
    • /
    • pp.435-442
    • /
    • 2024
  • We investigated the accuracy of surface air temperature prediction according to the selection of land-use data and initial meteorological data using the Weather Research and Forecasting model-v4.2.1. A numerical experiment was conducted at the Daegu Dyeing Industrial Complex. We initially used meteorological input data from GFS (Global forecast system)and GDAPS (Global data assimilation and prediction system). High-resolution input data were generated and used as input data for the weather model using the land cover data of the Ministry of Environment and the digital elevation model of the Ministry of Land, Infrastructure, and Transport. The experiment was conducted by classifying the terrestrial and topographic data (land cover data) and meteorological data applied to the model. For simulations using high-resolution terrestrial data(10 m), global data assimilation, and prediction system data(CASE 3), the calculated surface temperature was much closer to the automatic weather station observations than for simulations using low-resolution terrestrial data(900 m) and GFS(CASE 1).

Study on How Different Types of Land Use Around Green Belts Influence on the Effects of Temperature Decrease within Green Belts (녹지주변의 토지이용형태가 녹지내의 기온저감효과에 미치는 영향)

  • 윤용한;조계현;백승엽;김승태;김원태
    • Asian Journal of Turfgrass Science
    • /
    • v.17 no.1
    • /
    • pp.45-51
    • /
    • 2003
  • The purpose of this study was to find out how different types of land use around green belts affect temperature decrease effects. For this, temperatures within and outside of green belts were measured. Based on the collected data, the study analyzed the land cover status and temperatures within green belts, temperature decrease effects and the range of effects around green belts, and the correlation between trees and temperature decrease effects by way of regression analysis. As a result, areas of the high temperature within green belts were formed on paved surfaces, whereas areas of low temperature were formed around forests or water surfaces. In addition, deviation was bigger in the highest temperature than the lowest one for areas of Leeward around green belts, but in general, there was a tendency that temperature became low near to green belts. As for the relation between land cover rate and temperature, what was effective to temperature decrease included forests, pasture and water surfaces. On the other hand, the effects of temperature decrease varied depending on increase or decrease of land cover rates. As for the influence of the different land use types around green belts on temperature decrease effects, the Shakuzi Park showed relatively stronger effects than the Ageomaruyama Park.

Optimal Spatial Scale for Land Use Change Modelling : A Case Study in a Savanna Landscape in Northern Ghana (지표피복변화 연구에서 최적의 공간스케일의 문제 : 가나 북부지역의 사바나 지역을 사례로)

  • Nick van de Giesen;Paul L. G. Vlek;Park Soo Jin
    • Journal of the Korean Geographical Society
    • /
    • v.40 no.2 s.107
    • /
    • pp.221-241
    • /
    • 2005
  • Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an understanding of how various measured properties behave when considered at different scales. Understanding spatial and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana, where intensification of agricultural activities has been the dominant land cover change process during the past 15 years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use change predictors were mostly limited to moving windows smaller than 10$\times$10km. With increasing window size, LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change predictors at a coarser spatial extent. The spatial coverage of 5-l0km is incidentally equivalent to a village or community area in the study region. In order to reduce spatial variability of land use change processes for regional or national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna landscape.

A HIERARCHICAL APPROACH TO HIGH-RESOLUTION HYPERSPECTRAL IMAGE CLASSIFICATION OF LITTLE MIAMI RIVER WATERSHED FOR ENVIRONMENTAL MODELING

  • Heo, Joon;Troyer, Michael;Lee, Jung-Bin;Kim, Woo-Sun
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.647-650
    • /
    • 2006
  • Compact Airborne Spectrographic Imager (CASI) hyperspectral imagery was acquired over the Little Miami River Watershed (1756 square miles) in Ohio, U.S.A., which is one of the largest hyperspectral image acquisition. For the development of a 4m-resolution land cover dataset, a hierarchical approach was employed using two different classification algorithms: 'Image Object Segmentation' for level-1 and 'Spectral Angle Mapper' for level-2. This classification scheme was developed to overcome the spectral inseparability of urban and rural features and to deal with radiometric distortions due to cross-track illumination. The land cover class members were lentic, lotic, forest, corn, soybean, wheat, dry herbaceous, grass, urban barren, rural barren, urban/built, and unclassified. The final phase of processing was completed after an extensive Quality Assurance and Quality Control (QA/QC) phase. With respect to the eleven land cover class members, the overall accuracy with a total of 902 reference points was 83.9% at 4m resolution. The dataset is available for public research, and applications of this product will represent an improvement over more commonly utilized data of coarser spatial resolution such as National Land Cover Data (NLCD).

  • PDF

Standardizing Agriculture-related Land Cover Classification Scheme using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업지역 토지피복 분류기준 설정)

  • Hong Seong-Min;Jung In-Kyun;Kim Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

Analysis of forest types and stand structures over Korean peninsula Using NOAA/AVHRR data

  • Lee, Seung-Ho;Kim, Cheol-Min;Oh, Dong-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.386-389
    • /
    • 1999
  • In this study, visible and near infrared channels of NOAA/AVHRR data were used to classify land use and vegetation types over Korean peninsula. Analyzing forest stand structures and prediction of forest productivity using satellite data were also reviewed. Land use and land cover classification was made by unsupervised clustering methods. After monthly Normalized Difference Vegetation Index (NDVI) composite images were derived from April to November 1998, the derived composite images were used as temporal feature vector's in this clustering analysis. Visually interpreted, the classification result was satisfactory in overall for it matched well with the general land cover patterns. But subclassification of forests into coniferous, deciduous, and mixed forests were much confused due to the effects of low ground resolution of AVHRR data and without defined classification scheme. To investigate into the forest stand structures, digital forest type maps were used as an ancillary data. Forest type maps, which were compiled and digitalized by Forestry Research Institute, were registered to AVHRR image coordinates. Two data sets were compared and percent forest cover over whole region was estimated by multiple regression analysis. Using this method, other forest stand structure characteristics within the primary data pixels are expected to be extracted and estimated.

  • PDF