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Optimal Spatial Scale for Land Use Change Modelling :
A Case Study in a Savanna Landscape in Northern Ghana

Soo Jin Park* - Nick van de Giesen** - Paul L. G. Vlek***

A &) BAst A7 HHel FAALY BA :
7ht 282199 Auht A GE A2

MR E S| B B

Abstract : Land Use and Land Cover Changes (LUCC) occur over a wide range of space and time scales, and involve
complex natural, socio-economic, and institutional processes. Therefore, modelling and predicting LUCC demands an
understanding of how various measured properties behave when considered at different scales. Understanding spatial
and temporal variability of driving forces and constraints on LUCC is central to understanding the scaling issues. This
paper aims to 1) assess the heterogeneity of land cover change processes over the landscape in northern Ghana,
where intensification of agricultural activities has been the dominant land cover change process during the past 15
years, 2) characterise dominant land cover change mechanisms for various spatial scales, and 3) identify the optimal
spatial scale for LUCC modelling in a savanna landscape. A multivariate statistical method was first applied to identify
land cover change intensity (LCCI), using four time-sequenced NDVI images derived from LANDSAT scenes. Three
proxy land use change predictors: distance from roads, distance from surface water bodies, and a terrain
characterisation index, were regressed against the LCCI using a multi-scale hierarchical adaptive model to identify scale
dependency and spatial heterogeneity of LUCC processes. High spatial associations between the LCCI and land use
change predictors were mostly limited to moving windows smaller than 10x10km. With increasing window size,
LUCC processes within the window tend to be too diverse to establish clear trends, because changes in one part of the
window are compensated elsewhere. This results in a reduced correlation between LCCI and land use change
predictors at a coarser spatial extent. The spatial coverage of 5-10km is incidentally equivalent to a village or
community area in the study region. In order to reduce spatial variability of land use change processes for regional or
national level LUCC modelling, we suggest that the village level is the optimal spatial investigation unit in this savanna
landscape.
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1. Introduction

The impact of Land Use and land Cover
Change (LUCC) on the sustainability of
ecosystems becomes an increasingly important
issue in global-change research. Alterations of the
earth’s surface conditions result in changes in
energy, water, and geochemical fluxes at the
local, regional, and global scale. These changes
will inevitably influence the sustainability of
natural resources and the socio-economic
activities of many people living in ecologically
sensitive areas (Tumner II et al, 1995; Lambin et
al., 1999).

In recent years, human-induced LUCC is being
considered one of the main causes for climate
change, in addition to anthropogenic green
house gas emission (NASA, 2002). Modelling
LUCC processes is necessary to predict the
influence of LUCC on other global and local

environmental issues, and to formulate effective

environmental policies and management
strategies (Lambin et al., 1999). Reflecting the
overall importance and also the extreme
complexity of LUCC processes, many different
models have been developed. Comprehensive
reviews on the existing land use change models
are available in the literature (see Lambin et al,
2001; Irwin and Geoghegan, 2001; Veldkamp
and Lambin, 2001; Agarwal et al, 2002; Verburg
et al., 2002; Parker et al., 2002).

One of the major problems in modelling LUCC,
especially at regional and global scales, is the
diversity of both drivers and constraints of LUCC
at the local scale (Tumer 11 ef al., 199 Lambin et
al, 1999, p.75). LUCC is the result of complex
interactions between socio-economic conditions,

. the natural environment and the historical

heritage of individuals and communities. The
quality and quantity of natural resources are
highly variable in both time and space.

Furthermore, individual land use activities vary
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greatly, depending on environmental oppor-
tunities and constraints, educational background,
and cultural-social structures. In a comprehensive
review of 152 case studies on tropical
deforestation, Geist and Lambin (2002) showed
that tropical forest decline is determined by
different combinations of various factors in
varying geographical and historical context. They
concluded that there is no universal policy for
controlling tropical deforestation, and argued that
a detailed understanding of ‘the complex set of
causes and driving forces is required prior to any
policy intervention.

Adequate understanding on the spatial (and
also temporal) heterogeneity of LUCC processes
is often hampered by the problem of scale. The
identification of patterns and processes of LUCC
processes is strongly determined by the spatial,
temporal, and measurement scales chosen to
investigate heterogeneous landscapes (Kirkby et
al., 1996 Gibson et al., 1998). In addition, a
change in the scale of observation is directly
linked with changes in dominant system
components and interactions. Therefore, the
factors explaining LUCC will likewise change
with changing scale, making it difficult to
combine and transfer findings across different
scales (Gibson et al., 1998; Verburg et al., 2002).
Despite the overall importance on model
construction and results, only few land use
change studies have investigated the influence of
spatial scale (e.g. Walsh et al, 1999; Veldkamp et
al., 2001). Recently, Verburg et al. (2002)
reviewed land use models to identify priority
research areas, and concluded that multi-scale
characteristics of the land use system is one of
the most poorly understood components of
LUCC modelling.

The main objective of this research is to

understand how spatial heterogeneity of LUCC
processes determines to what extent land use
change at the different spatial scales. The specific
setting is the sub-humid to semi-arid savanna
landscape in Ghana, West Africa. The high
seasonal and yearly variability of rainfall, in
combination with the low soil nutrient status of
the soils in the savanna landscape, render this
ecosystem very sensitive to global change. A
detailed understanding of the land use change
processes is the first step towards the subsequent
development of a general framework to ensure
the livelihood of people in the study area under
certain scenarios of global change and policy
interventions (Vlek et al., 2003).

The specific research questions are: 1) How
does the local heterogeneity of LUCC drivers and
constraints influence regional LUCC model
outputs ?, 2) Are there any changes in functional
relationships between land use change pattems
and drivers with changes in spatial scale?, and 3)
What is the optimal scale to include the
necessary detail of diversity and complexity of
LUCC processes at regional level? The last of
these three questions, the existence of an
optimum scale for LUCC modelling, is
controversial. It is widely acknowledged that
ecosystem functions vary continuously with
scale. 1t is rare that a single scale can be regarded
as correct or optimal for measurement and
prediction (Gibson et al., 1998; Schulze, 2000). At
the same time, however, the identification of the
optimal spatial scale (or sampling units) to
capture the social and ecological patterns and
processes of LUCC is considered necessary, and
is seen as one of the first technical challenges to
construct model components and their
interactions (Lambin et al. 1999; Redman et al.,

2000). In this paper, the optimum spatial scale is
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defined as the spatial extent (or unit) that is large
enough to include local heterogeneity, but small
enough to reduce the extreme complexity of
overall LUCC processes at the regional scale. The
identification of such an optimal spatial scale
may encourage the set up of a common
framework among modellers to collect and

analyse data for a broader spatial coverage.

2. Study Area

The study area is a 100km by 100km area in
the Northern Region of Ghana, with Tamale as
the regional capital in the center (Figure 1). The
area is bounded by latitudes 8° and 10° 50N
and longitudes 3° 40° and 1° 40°E. The climate
is tropical continental with one rainy season

(May to October) and a prolonged dry season

(November to April). Annual precipitation is
about 1,100mm. The vegetation type is a Guinea
savanna comprising of tall grasses with
interspersed trees or shrubs. The soils are
Luvisols, but Gleysols and Vertisols occur in
lowlands and. valley bottoms. These soils
developed over sandstones, shales, quartz, and
mudstones.

The main economic activity is agricultural food
production (Clottery and Kombiok, 2000). The
most common crops in this area are maize, yam,
sorghum, millet, cowpea, rice, cassava, and
groundnut as food crops, and cotton, kenaf,
sheanut, and soybean as industrial crops.
Estimated population growth during the last 15
years (from 1984 to 2000) was 2.7% in the
Northern Region. Especially the Tamale District

has experienced rapid population growth.
Abudulai (1996) reports a 136% increase in

Figure 1. The location of the study area in this research. The square presented in Figure 1 (B) is approximat—
ely 100km by 100km located at the Guinea savanna
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population from 1984 to 1995. The main land use
changes are the intensification of agriculture and
expansion of agricultural land into previously
forested areas. However, population growth in
the region can not be considered the sole and
major cause of LUCC (Clottery and Kombiok,
2000 Braihmoh, 2003). The economic and
structural adjustment programs of the late 1980s
and early 1990s led to rapid land use changes
and displacement of many farmers into formerly
forested areas. The rice and cotton production
introduced in the early 1980s was greatly
reduced in the 1990s due to low market prices
and expensive fertiliser (Clottery and Kombiok,
2000).

Using multi-temporal remotely sensed imagery
of the study area (Vescovi et al., 2002), two kinds
of land use change can be distinguished: 1)
short-term change due to seasonal effects, and 2)
long-term or permanent change due to human
actions such as construction of new
infrastructure, deforestation, and farming. Short-
term change is simply due to the effect of the
seasonal climate on vegetation. Long-term
change includes two kinds of change: conversion
from one land cover category to another (e.g.
from forest to grassland) and modification within
one category (e.g. from closed forest to open

forest).

3. Human-Induced Land
Cover Change

1) Change Detection: Multivariate Variance
Component Analysis

Prior to the investigation of the scale depen-

dency of LUCC processes, the spatial extent and
intensity of land use change was determined.
Due to the lack of historical and socio-economic
data, change detection was solely based on the
interpretation of remote sensing (RS) imagery.
Many RS-based change detection methods are
available, and the success and efficiency of
individual methods depend on the characteristics
of the landscape and the type of land cover
change (see Singh, 1989; Civco et al., 2002).
Traditional change detection methods based on
land-use classes have severe limitations for the
study area. In a typical savanna landscape,
settlements are widely scattered and individual
agricultural fields are small and frequently mixed
with other natural and secondary vegetation.
Furthermore, seasonal phenological vegetation
changes are too pronounced to confidently
separate agricultural land from natural savanna
vegetation using RS imagery alone. Land use
classification was also strongly affected by wide-
spread bush-fire scars in some remote sending
images.

A new, multi-variate statistical approach was
developed to quantify human-induced land cover
change, utilizing the variance characteristics of
time-sequenced NDVIs (Normalized Difference
Vegetation Index) derived from LANDSAT
images. The NDVI, the normalized difference of
brightness values from the near infrared and
visible red bands, has been found to be highly
correlated with crown closure, leaf area index,
and other vegetation parameters (Singh, 1989).
We made the explicit assumption that NDVI
reflects the land use condition on the ground.
The proposed method does not differentiate
between detailed types of land use and
trajectories of change, but offers the relative

intensity of land cover changes over the study
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period. We define this index as the Land Cover
Change Intensity (LCCI) over a certain time
period, which provides information on the
possible location and intensity of human-
induced land use and cover changes. This single-
continuous indicator is particularly useful to
investigate the subsequent scale dependency
of LUCC processes in this study.

The following is a brief summary of the
algorithm developed to detect human-induced
land use changes. Park and Vlek (2005) will
provide a more detailed account of the
methodology itself. Four NDVI (NDVI=(infrared-
red)/(infrared+red)) images were derived from
30m resolution LANDSAT TM and ETM scenes
after‘atmospheric correction and ground truthing
(Vescovi et al, 2002). These include two
LANDSAT-TM scenes from 14 November 1984
and January 1991, and two LANDSAT-ETM+
scenes from 7 November 1999 and 14 March
2000. The two images from November 1984 and
November 1999, display the area at the end of
the rainy season, when vegetation is still well
developed and NDVIs are high. The two images
from January 1991 and March 2000 were
acquired in the dry season and the vegetation
was wilted. The average coregistration error was
less than 1.5 pixel for the four NDVI images. The
original 30m grid NDVIs were re-sampled to a
90m grid using binary interpolation.

The total variance in spatio-temporal
environmental data (32 consists of three

variance components (Park and Vlek, 2005):
0/=0, 2+ +¢

where 9,7 is caused by any directional or human-
induced change, 9 is due to seasonal and cyclic
changes, and ¢ is the remainder or error term.

The error term includes noise caused by

measurements and instrumentation. Remote
sensing images taken from the same spatial
extent are often subject to high variation due to
atmospheric conditions, receiving angles, and the
calibration of receivers. The error associated with
such instrumentation is difficult to separate from
spatio-temporal data sets, and can only be
considered as random error.

The separation of seasonality and error
components from total variance, may yield
human-induced changes. The cyclic variance
component is the result of climatic seasonality,
vegetation growth, and land management
activities. In our example, it is clear that the
NDVI in the savanna landscape is always subject
to cyclic climatic conditions. Various attempts
have been made to develop mathematical
expressions that fit vegetation development
curves for remotely sensed data (e.g. Badhwar
and Henderson, 1985; Lambin and Strahler,
1994). Such detailed mathematical modelling
requires an extensive time-sequence data set,
which is not available for the study area.

In order to separate the variance component
caused by seasonal phenological changes and
the random error components from the total
variance of the NDVIs, it is assumed that the
variance of the NDVIs is linearly correlated with
the mean of the NDVIs. From the phenological
point of view, this implies that a more dense
vegetation shows higher seasonable variations
over a certain time period. Park and Vlek (2005)
observed that spatio-temporal data, including
groundwater salinity, remote sensing signals, and
soil moisture content, show a clear relationship
between the mean (2) and total variance (92).
This assumption was further supported by a
linear relationship between the mean and the

variance of the NDVIs of the study area, as
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Figure 2. The overall procedure for the change detection methods and the multiscale adaptive model to inv—
estigate the spatial heterogeneity and scale dependency in northern Ghana,

shown in the scatter plot in Figure 2. The
variance of the NDVIs is a linear function of the
mean of the NDVI with a high coefficient of
determination (92=1.405 z, R*=0.506).

While the majority of the points are scattered
within +1 d? of the regression coefficient in
Figure 2, some points significantly deviate from
the regression line both in the positive and
negative directions. We hypothesized that those
areas that show significant deviation from the
regression line reflect human-induced land cover
changes, which have been caused by other than
seasonal phenological changes. The variance

component caused by seasonal phenological

changes of the vegetation was removed from the

total variance using residual analysis. In Figure 2,

the residual is presented on a standard deviation

scale, indicating the relative intensity of land

cover change over the last 15 years.

2) Spatial Distribution of Land Cover
Change

Figure 3 shows the distribution of land cover
change at the study site and the comparison of
remote sensing images at three locations where
significant changes were evident for two time
periods (November 1984 and November 1999).
This map shows that intensive land cover change
is concentrated along the major road network,
even though there are several ‘hotspots’ that are
not linked with roads. High intensity of land
cover change along the roads is to be expected,

as the majority of settlements are located along

—-227-



Soo Jin Park - Nick van de Giesen - Paul L. G, Vlek

Figure 3. Intensity of land cover changes in northern Ghana as well as three hotspots. (A) Increase of bush
farms in an area in the neighbourhood of Fufulsu, North Region, Ghana. (B) Construction of an irrigation system
in Daboya, During the dry season the effect of the irrigation on the landscape is very evident. (C} Deforestation
and farming activities in Wuripe village (remote sensing images from Vescovi et al,, 2002).

the roads, and major towns are at the junction of
main roads. The rapid increase of population
demands more agricultural land around the
settlement, which results in the intensification
and conversion of land use patterns. The change
detection method was also useful to identify
‘hotspots’ where rapid land use changes occurred
during the study period. The area A, shown in
Figure 3 (A) yields very high LCCI values due to
the new irrigation scheme below the newly
constructed Daboya dam in the late 80s. The
water body behind the dam shows a low
intensity of change. Figure 3(B) is typical for the

encroachment of agricultural land on the river

riparian zones in Fufulsu. Before the 80s, it was

not possible for the local people to settle close to
the river because of the risk of onchocerciasis

(river blindness). Increasing population pressure

and eradication of river-blindness in West African
countries, encourage farmers to explore riverine
areas and wetlands for farming activities. Local
people prefer the riparian zones for their high
soil nutrient status and water security. Another
example shows farming activities in the newly
settled village of Wuripe (Figure 3 (C)). Intensive
socio-economic surveys in this area show that
most people in this village come to this site for
farming while their permanent residences are
elsewhere (Braihmoh, 2003).

We can distinguish two forms of land use
change from the spatial distribution of LCCIL: the
first is diffusive agricultural intensification at or
near existing human settlements, and the second
is rapid alteration of land cover from natural
vegetated areas to agricultural land-settlements

(‘hotspots’). Detailed RS image interpretation
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suggests that such rapid alterations have been
caused by the rise of new environmental and
economic opportunities, such as the construction
of an irrigation scheme, new road, or the
eradication of river blindness. While most of the
land surface shows a gradual transition from one
state to the other, accelerated changes occur in
some hotspots where dynamic socio-economical
and natural processes occur. The relative
contribution of these two land use change modes
to the rate of total land cover change is currently
under investigation, but it is important to note
that there are distinctively different drivers and
constraints between the diffusive and ‘sporadic’
or hotspot type land use changes (Lambin and
Ehrlich, 1997).

4, Multi-Scale Environmental
Correlation

1) Proxy Land Use Change Predictors

Detailed understanding of the LUCC processes
requires a large amount of empirical socio-
economic, natural, and institutional information.
The main drivers are often regional specific,
rather than universal links between cause and
effect (Geist and Lambin, 2002). Among many
possible land use change drivers, three
environmental variables distance to roads
(ROAD), distance to permanent water bodies
(HYDRO), and the Terrain Characterisation Index
(TCD, were used as proxy predictors to
investigate the relationship between LCCI and
environmental conditions (Figure 2). In the study
area, human settlement and markets are located

along road networks, and LUCC has also been

closely linked with road networks. As shown in
Figure 2, strong LCCI occurs at, or around, the
junctions of roads. In a savanna landscape, water
availability is one of main constraints for
agricultural activities (see Figure 3 (B) for rapid
LUCC near the river). A distance matrix to surface
water was used to represent the accessibility to
fresh water. In addition, topographical shape, as
expressed by TCI, was also included as one of
the variables to explain LUCC. According to
communication with local agricultural experts
(Clottery and Kombiok, 2000), the increase of
agricultural land forces farmers to encroach upon
previously unfavourable landscape positions
(shoulder and steep slope).

The readers should be warned that the selec-
ted proxy environmental variables are not
sufficient to fully explain the causal relationship
with the observed land use changes. The choice
of these variables was made based not only on
their relative importance as land use change
drivers, but also on the availability of fine-scale
spatial information that is necessary to examine
the influence of scale. In a recent empirical study
to analyse land use change processes at the same
study area (Braihmoh, 2003), topographical
parameters, land suitability index, distance from
roads and markets, and population increase were
selected as significant environmental variables in
a logistic regression to explain land use change.
The selected variables for this study are similar
with those used in the empirical study. However,
some other variables, such as population density
and land suitability index, were not considered.
Considering the large spatial extent of the study
area (10,000km?), it is difficult to generate
continues fine resolution information to assess
their influence on the spatial correlation

described below.
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Distance from roads and surface water were
calculated for a 90m grid, based on GIS layers
that were digitised from 1:50,000 topographical
maps. In order to include topography in land use
change processes, the TCI was calculated from
the digital elevation model according to the

following equation;

TCI = Log (As) - Cs

where As is the upslope contributing area, and Cs
is surface curvature. As is an approximation of
the water flow potential over the landscape, and
Csis a combined terrain index representing slope
angle and slope curvature (Park et al, 2001). A
higher, positive TCI indicates a more erosive
environment, often low in soil nutrients, while a
lower, negative TCI is found in predominantly
dépositional environments with high soil quality
and water accessibility (Park et al., 2001). The
original 200 ft digital elevation .model digitised
from the topographical maps was re-sampled to
a 90m grid before calculation of the TCL

2) Multi-Scale Hierarchical Adaptive Model

In order to identify associations between LCCI
and the proxy land use change predictors at
different spatial scales, a multi-scale hierarchical
adaptive model was developed. This method
places a square moving window with a grid size
(d) and the size of window (#) on the maps of
both the dependent and independent variables,
and calculates either the Pearson correlation
coefficient (n or the coefficient of determination
(R within the moving window (Figure 2). When
the size of a cell (d) is defined, a moving
window with a given number of cells () was
placed at the upper left-hand corner, and the

spatial association between LCCI and proxy

environmental variable(s) is calculated between
the cells within the window. This calculation is
repeated from the upper left-hand cormner to the
lower-right corner of the raster image. When the
calculation at one size of window (#) is finished,
the size of the moving window is increased and
the same calculation is repeated.

The method developed is a modification of the
widely(Nelson, 2001) known kemel filtering or
convolution filtering. Nelson (2001) demonstrated
a similar technique to calculate Pearson’s 7
between two variables and visualise the spatial
distribution of this correlation. In this research,
however, the Pearson r is calculated when one
independent variable is used, while R? can be
calculated when two or more independent
variables are used. To calculate R?, a step-
forward least square regression method is used
within each moving window. Since a large
number of regression equations are involved for
the whole area, it is difficult to assess whether
each regression meets the basic assumptions of
multiple regression analysis. Furthermore, direct
interpretation of the relative contribution of the
individual indepen-dent variables to the total
regression model is difficult to assess. A
hierarchical approach in which the three
environmental parameters were successively
included in the analysis, was applied in order to
estimate the importance of individual variables
following the method used in Park and Vlek
(2002). In total, six different combinations of
proxy variables were included and their model
performance was compared. The multi-scale
adaptive model was programmed in S language
and run in S-Plus 6.0. ArcView with the spatial
extension was used for visualisation and spatial
analysis.

We expect that the method developed is able
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to explore two different aspects of scale issues by
changing either d or n. Spatial scale is frequently
referred to in terms of either spatial resolution or
spatial extent (Gibson et al., 1998). The
resolution refers to the minimum observation
unit, such as cell size in the raster image, the size
of a quadrat for ecological investigation, and
measurement interval for certain hydrological
processes. On the other hand, the extent
indicates the spatial coverage or boundary for an
investigation. For this research, the size of each
cell (a) of a moving window may be defined as
the resolution of the calculation, while the size of
moving window (%) is the extent of the
calculation. When the mean and standard
deviation of »and R are plotted against window
size (n) or cell size (d), we may characterise the
scale-dependent relationships of associations
between LCCI and proxy variables.
Interpretation of the results requires special
attention. Both Pearson’s r and K are Euclidian
distance based statistics, which are subject to
various statistical assumptions: the deviations
(errors) are random, the random deviations are
independent, normally distributed, and have a
constant variance. In addition, spatial variables
normally exhibit spatial dependence (autoco-
rrelation). Sample points that are close to each
other may contain similar information, which
results in duplication of the same information in
calculating the correlation between two variables.
In the current literature, few techniques are
available to estimate a localised version of the
‘global’ regression model that takes account of
the influence of spatial autocorrelation. They
include geographically weighted regression
(Brunsdon et al., 1986; Fortheringham et al.,
1997), spatial adaptive filtering (Foster and Gorr,
1986), and random coefficient modelling (Aitkin,

1996). In ecological studies, also the Mantel
correlogram is used to identify associations
between two spatial variables in series of discrete
distance classes (Urban et al.,, 2002).

The existing methods to remove spatial
autocorrelation mainly prefer to point
measurements. The raster images used in this
research contain a large number of cells for each
variable (90m grid size over 100 X 100km).
Identifying and removing spatial autocorrelation
would be well beyond the computing capacity of
a desk-top computer. Furthermore, the
separation of the partial influence of spatial
autocorrelation from the ‘real’ correlation
between variables may be difficult in many cases.
Since the main research interest in this paper was
to identify the influence of scale, we accept the
possible existence of spatial autocorrelation in
model outputs and the derived statistical
parameters will be only used for descriptive

purposes(Nelson, 2001).

5. Results

1) ‘Global’ Regression vs. ‘Local’ Regression

A stepwise regression between LCCI and the
three proxy variables for the whole study area
explained about 5% of the total variance of LCCI
(LCCI = 0.0003 + 0.0099TCI + 0.0043HYDRO, R=
0.054). Despite some clear spatial associations
between LCCI and these variables seen in Figure
3 (e.g., the association between road network
and intensity of land cover changes), the ‘global’
regression model yields virtually no correlation
between LCCI and proxy variables. Such low

‘goodness-of-fit’ is partly due to the limited

- 231 -



Soo Jin Park - Nick van de Giesen - Paul L. G. Vlek

04
035 X ——road “B—hydro |-
0.3 e \ ——TCl —#—TCl+hydro
0.25 —¥%—TClroad —8— hydro+road
2 02 ——TCkhydrotroad |7

Window Size (km)

Figure 4. R2 changes in regression analyses between land cover change intensity and-environmental factors
with the size of the moving window. Please note that the values given in this figure are averaged values
from many repeated calculations. During the regression analyses for each size of the moving window, only
one third of the windows were overlapped with the adjacent window.,

information contained in the proxy land use
change predictors used in the model (see section
4.1). More importantly, however, we believe that
strong non-stationarity of LUCC in the study area
caused the low R? value. The interpretation of
the spatial distribution of LCCI has already shown
that there are significant differences in
relationships and processes of LCCI within the
study area (Figure 3). As an example, the strong
association of LUCC with the road network at the
upper parts of the images might be compensated
by weak association in the lower left comer.

The application of the multi-scale hierarchical
adaptive model produced relatively high R?
values at a finer spatial scale (Figure 4). The
influence of spatial extent on the localised
regression model was explored, by changing the
size of the moving window (») from 9
(approximately 1km) to 303 (approximately 28
km) of the 90m grid resolution (). In Figure 4,
the three proxy predictors jointly explain on

average 37% of LCCI within a 2km moving

window, whereas the actual R? on this scale
varies from 0.0 to 0.91. As the size of the moving
window is increased, the average R? rapidly
decreases until a window size of 10km is
reached. An increase in window size is
associated with a further decrease of B for >
10km windows, eventually approaching the
global R* value of 0.05. Even though detailed
interpretation of actual LUCC processes is difficult
using the currently available proxy variables, it is
clear that when the study area is considered as a
whole in the regression model, LUCC processes

tend to be too diverse to be modelled.

2) Variance Characteristics of Environ-mental
Correlation

When each proxy variable is regressed
separately against LCCI, the average Pearson’s r
slightly increases with the increase in spatial
extent for all three environmental factors (Figure

5 (A), (B), (). Since correlation coefficients
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Figure 5. The change of Pearson’s r between LCCI and three proxy land use change drivers as the spatial
extent of the multi-scale adaptive model was increased. (A) distance from hydrological network (HYDRO), (B)
distance from road network (ROAD), (C) Terrain characterisation index (TCI), and (D) absolute r for three

proxy land use predictors,

range from -1 to 1, it is necessary to take
absolute values to investigate the magnitude of
the spatial association. The absolute mean r
decreases exponentially with an increase in
window size for all three variables (Figure 5 (D).
The average correlation coefficient and the
variation, presented as standard deviation of total
7, gradually decrease with an increase in spatial
extent. This pattern suggests that the association
between LCCI and environmental proxy variables
is stronger at the finer spatial scale.

There is, however, also a marked difference in
the intensity of association over space (ranging
from high negative to positive 7). Figure 6
presents the spatial distribution of correlation

coefficients between LCCI and TCI for four

different sizes of the moving window. In a 1.5
km moving window, the spatial distribution of
Pearson’s r shows highly scattered patterns, but
strong positive r along the riparian zone and at
the highly populated upper western part of the

* study area. It is expected that the high positive

association of LCCI and TCI indicates that the
farmers take terrain shape more actively into
account in the river riparian zone and highly
populated area. With the increase in size of the
moving window, there are clear spatial divisions
between positively and negatively correlated
areas. With increasing window size, such
heterogeneities and diversities of LUCC processes
eventually become smoothened as changes in

one part of the window are compensated
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Figure 6. The influence of different moving window size on the correlation coefficient between LCCl and TCl.
The LCCl intensity is rescaled in a standard deviation (see Figure 1 for the legend).
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Figure 7. The change of of Persons’s r between
LCCI and the distance from roads with changes of
grid resolution (d in Figure 1),

elsewhere.

The effect of grid size (d) on the correlation
between LCCI and environmental factors was
explored using the LCCI and the distance from
the road (Figure 7). The 90m grid data were
aggregated into 180m and 270m grids using
binary interpolation. Correlation coefficients
show similar patterns as before, decreasing with
an increase in the size of the moving window.
However, the average r from a coarser grid is
lower than that of a finer grid, e.g., 0.52 for the
90 m grid, 0.46 for the 180 m grid, and 0.38 for
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a) 270m grid

a) 1000m grid ) 2000m grid

Figure 8. The influence of spatial resolution on the
identification of land use change intensity in
northern Ghana

270 m grid for the 1km window. Similar shifts
were also observed for the standard deviations.
The low average r at the coarser resolution is
probably caused by the aggregation effect for
both the LCCI and the proxy variables. The
increase in grid resolution is related to reduction
in variance was found in several ecological and
hydrological studies (Gibson et al.,, 1998; Bloschl
and Sivapalan, 1995). One pattern that should be

noted in Figure 8 is the loss of spatial ‘hotspot’ '

beyond the 1000 m grid resolution. The mean of
certain spatial information may be maintained at
coarser grids, but the reduced variation results in
the spatial homogenization of forms and
processes.

When comparing the relative influence of
spatial resolution and spatial extent on the
overall spatial correlation, spatial extent has more
significant influence than spatial resolution. There
is a relatively large difference in r at the smaller

spatial extent (less than 10km), but at the larger

—e—HYDRO —8-—ROAD ﬁ—‘TCIJ

0.1
g
£ 0.08
M \
2 0.06
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s i
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Figure 9. The change of standard deviation
(STDEV) of Persons r between LCCl and proxy
land use change drivers,

extent the differences become much smaller, and
eventually no difference remains. The difference
in average r between 90 m and 270 m grids is
about 22 % for the 2km window, but this
decreases to less than 4% with the 10km spatial
extent, and continues to decline with an increase
in the spatial extent. The change of r due to
increased spatial extents between 2km to 10km is
over 50% for all environmental variables (see also
Figure. 5(D)), a far greater effect than was
observed for spatial resolution. In their
investigation of the influence of spatial extent
and grid resolution on the land use change
processes in various regions, Kok and Veldkamp
(2001) also found that the effect of spatial
resolution, by aggregating a basic grid to larger
units, is small in comparison to the effect of
increased spatial extent.

Different scale dependencies were observed
for the three environmental variables used
(Figure 4 (D)). Whereas the correlation with TCI
and road network shows a rather stable r for
windows > 5km, the correlation with the surface-
water body continuously decreases with
increasing window size. Further studies are
necessary to connect these patterns with actual

land cover change processes. However, we
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hypothesize that there is a spatial ‘threshold’
between land use change and environmental
conditions. For example, areas beyond 5km from
major roads change less due to the low
accessibility to markets and high transportation
cost. A similar critical window size might emerge
for TCI.. Considering the fact that the size of first-
or second-order catchments in Ghana ranges
between 5 and 10km, this window size might
best reflect changes of land use patterns from
catchment to catchment. On the other hand, the
scale dependency in the case of surface-water
bodies continuously decreases with the size of
the moving window, which might reflect the
overriding importance of water availability in the
semi-arid landscape.

The spatial dependency in the relation
between LCCI and the proxy variables within the
5-10km spatial extent is further related to the
reduction in the variation of 7 Figure 9 shows
the difference in standard deviation as a function
of spatial extent. When the moving window is
made smaller than Skm, there is a rapid change
in the standard deviation, whereas it is low but
stable at extended values of over 5km. Spatial
extents of less than 5-10km are characterised by
intensive spatial heterogeneity of LUCC
processes. For larger spatial extents, there are
few additional changes in correlation values
(Figure 9). The spatial scale of 5-10km can be
considered as the ‘threshold scale’ in terms of cor-

relation intensity and also in terms of variance.

6. Discussion

The results presented in this paper confirm that

spatial heterogeneity deserves careful

consideration when modelling land use change

processes at a regional scale. The global
regression model yields virtually no linear
relationship between land cover change index
and proxy drivers, but the multi-scale adaptive
model shows that this was solely caused by the
diversity of land use change processes and
scaling effects. High positive correlations at one
site may be compensated by high negative
correlations at other sites. Furthermore, global
regression models have clear limitations with
respect to the ‘hotspot’ type of land use change.
The occurrence of this land use change is locally
specific and is considered ‘noise’ in the
regression models.

In recent years, interest in more spatially and
also temporally disaggregated process models
has grown (reviewed by Agarwal et al., 2001;
Parker et al., 2002). Process models may be able
to cope with the spatial heterogeneity of LUCC
model components and interactions of system
components in their modelling framework, by
taking account of spatially disaggregated
information based on prior understanding of
LUCC processes. Unlike traditional statistical
models, however, process based models require
predefined system boundaries and components
that often need intensive data collection and
programming. One immediate question is what
would be the optimal spatial scale (for both
spatial extent and boundary) and the system
components, when someone want to model
LUCC processes at a regional scale.

The most detailed spatial resolution (e.g.,
household level for decision making processes)
is probably best when one is interested in the
characterisation of the land use change processes
in a predominantly agricultural society. Different
households may apply totally different land use

strategies based on their individual economic
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situation, technological adaptations, and
customary social regulations. However, the
greatest constraint for such land use change
modelling is the lack of appropriate data on such
a fine spatial scale. As shown in this research,
there is a trade-off between scale and informa-
tion. A high level of aggregation of data reduces
the causal relationships of LUCC. On the other
hand, fine scale information provides details, but
their use is limited due to difficulties to extend
the spatial boundary to a large area (Mertens and
Lambin, 1997).

One of the main challenges for future LUCC
modelling is how the detailed decision making
processes at the fine resolution (household) are
included in a model for a large study area, which
cause apparent sampling and upscaling
problems. If we are searching for an optimal
spatial scale for a spatially disaggregate land use
change model, this scale should match a model
element (spatial unit) that is sufficiently large to
average out all the small-scale variability but will
explicitly represent spatial differences in land use
drivers and constraints. One possible way to
incorporate spatial heterogeneity across scales is
to divide the spatial and temporal extents into
smaller units in which patterns and processes are
relatively similar. There are parallel concepts
available in hydrology (Wood et al., 1988;
Bloschl and Sivapalan, 1995; Fliigel, 1995). This
approach is based on findings that the variances
and covariances of key variables are invariant in
landscapeunits above a certain threshold size.
Studying rainfall and runoff, Wood et al. (1988)
observed that the variability of rainfall and runoff
appears to be controlled by variabilities in soils
and topography whose correlation length scales
are on the order of 10%-10°> m typical hilllsope

scales. At increased spatial scale, the increased

sampling of hillslopes leads to a decrease in the
difference between sub-catchment responses. At
a particular scale, the variance betweén
hydrological responses for catchments of the
same scale should reach a minimum. Wood et al.
(1988) suggest that this threshold scale reflects a
representative element area (REA), which they
propose as a fundamental building block for
hydrologic modelling and scaling. Therefore, the
variability must be explicitly presented at scales
larger than the element size, while variability at
the sub-element scale can be presented in a
lumped way. Others have shown that the size of
REA depends on various factors, including the
nature of the climate, terrain and vegetation in
the areas for which the model is applied and the
nature of variability (Bloschl et al., 1995). In a
similar way, our method identifies the size of
representative LUCC areas.

The multi-scale adaptive model in this research
showed that the correlation between LCCI and
proxy environmental factors rapidly declines at a
finer scale (5-10km), but the difference becomes
small at spatial scales coarser than 10km (Figures
7 and 9). The high correlation at less than the 5
km window is also characterised by high
variance of environmental correlation within the
study area. Therefore, the spatial scale of 5-10km
may be considered as the ‘threshold scale’ for a
spatially explicit modeling of LUCC processes in
the study region. The spatial variability at this
threshold scale should be explicitly modeled in
order to consider the spatial heterogeneity of
LUCC processes.

The spatial extent of 5 to 10km more or less
coincides with the spatial boundary of most
villages or farming communities in the West
African savanna. We also observed that the

occurrence of many land use change hotspots
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correspond to this spatial extent of 5 to 10km.
We anticipate several advantages of the inclusion
of village-level investigations into a LUCC model.
In the savanna landscape, the village boundary
often coincides with natural boundaries such as
catchments or hillslopes, which provides a good
opportunity to merge socio-economic and natural
processes in a unified LUCC model. Land-tenure
and land-use related decisions are often
determined at the village level which induces
different types of land use change trajectories
between villages. Furthermore, government
policies are often targeted to be disseminated at
village or community level (Hoddinott et al.,
2001). In terms of practical data collection,
spatially disaggregated information is often
available at the village level from national census
data. Considering data availability and the
potential to reduce spatial heterogeneity of
landscape processes at the regional or national
level, the village level (5-10km) may be the
optimal spatial unit suitable for both process-
based and regression-based LUCC models.

7. Conclusions

There is a strong spatial heterogeneity in land
use change and its environmental correlations
with proxy variables in the savanna in Northern
Ghana. Strong correlations between the LCCI and
the chosen environmental variables are mostly
limited to spatial scales of less than 5-10km. With
increasing spatial extent, LUCC processes within
the area tend to be too diverse to establish clear
change trends, because changes in one part of
the window are compensated elsewhere. Spatial
extent turned out to be more important than

spatial resolution in land use change modelling,

due to the spatial heterogeneity of LUCC
processes. Given the spatial heterogeneity of
LUCC processes and the paucity of data
availability, we contend that the village level (5-
10km) might be the optimal spatial unit for both
process-based and regression-based land use
change models. Village level modelling might
also be more effective for upscaling of land use

change models toward a larger spatial extent.
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