• Title/Summary/Keyword: land-cover

Search Result 1,421, Processing Time 0.031 seconds

Land Use/Land Cover (LULC) Change in Suburb of Central Himalayas: A Study from Chandragiri, Kathmandu

  • Joshi, Suraj;Rai, Nitant;Sharma, Rijan;Baral, Nishan
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.1
    • /
    • pp.44-51
    • /
    • 2021
  • Rapid urbanization and population growth have caused substantial land use land cover (LULC) change in the Kathmandu valley. The lack of temporal and geographical data regarding LULC in the middle mountain region like Kathmandu has been challenging to assess the changes that have occurred. The purpose of this study is to investigate the changes in LULC in Chandragiri Municipality between 1996 and 2017 using geographical information system (GIS) and remote sensing. Using Landsat imageries of 1996 and 2017, this study analyzed the LULC change over 21 years. The images were classified using the Maximum Likelihood classification method and post classified using the change detection technique in GIS. The result shows that severe land cover changes have occurred in the Forest (11.63%), Built-up areas (3.68%), Agriculture (-11.26%), Shrubland (-0.15%), and Bareland (-3.91%) in the region from 1996 to 2017. This paper highlights the use of GIS and remote sensing in understanding the changes in LULC in the south-west part of Kathmandu valley.

Effect of the Urban Land Cover Types on the Surface Temperature: Case Study of Ilsan New City (도시지역의 토지피복유형이 지표면온도에 미치는 영향: 경기도 일산 신도시를 중심으로)

  • Kim, Hyun-Ok;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.203-214
    • /
    • 2012
  • The physical environment of urban areas covered mostly by concrete and asphalt is the main cause of the urban heat island effect, primarily becoming apparent through increased land surface temperature. This study examined the effect of different urban land cover types on the land surface temperature using MODIS, Landsat ETM+ and RapidEye satellite data. As a result, the remote sensing based land surface temperature showed a marked difference according to the land use pattern in the case study of Ilsan new city. The high-rise apartment residential districts with less building-to-land ratio and higher green area ratio revealed lower land surface temperature than the low-story single-family housing districts characterized by relatively high building-to-land ratio and low green area ratio. From the view of climate zone and land cover types, there is a strong linear correlation between the impervious land cover ratio and the land surface temperature; the land surface temperature increases as the impervious built-up areas expand. In contrast, vegetation;water and shadow areas affect the decrease of land surface temperature. There is also a negative (-) correlation between NDVI and land surface temperature but the seasonal variation of NDVI can be hardly corrected.

Evaluating Tropical Night by Comparing Trends of Land cover and Land Surface Temperature in Seoul, Korea

  • Sarker, Tanni;Huh, Jung Rim;Bhang, Kon Joon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.2
    • /
    • pp.123-130
    • /
    • 2020
  • The impact of urbanization on LST (Land Surface Temperature) and TN (Tropical Night) was observed with the analyses of land cover change and LST by associating with the frequency of TN during the period of 1996 to 2016. The analyses of land cover and LST was based on the images of Landast 5 and 8 for September in 1996, 2006, and 2016 at a 10 year interval. The hourly-collected atmospheric temperatures for the months of July and August during the period were collected from AWSs (Automatic Weather Stations) in Seoul for the frequency analysis of TN. The study area was categorized into five land cover classes: urban or built-up area, forest, mixed vegetation, bare soil and water. It was found that vegetation (-7.71%) and bare soil (-9.04%) decreased during the period while built-up (17.29%) area was expanded throughout the whole period (1996-2016), indicating gradual urbanization. The changes came along with the LST rise in the urban area of built-up and bare soil in Seoul. In addition, the frequency of TN has increased in 4.108% and 7.03% for July and August respectively between the two periods of the 10 year interval, 1996-2006 and 2006-2016. By comparing the increasing trends of land cover, LST, and TN, we found a high probability that the frequency of TN had a relationship with land cover changes by the urbanization process in the study area.

Development of calculating daily maximum ground surface temperature depending on fluctuations of impermeable and green area ratio by urban land cover types (도시 토지피복별 불투수면적률과 녹지면적률에 따른 지표면 일최고온도 변화량 산정방법)

  • Kim, Youngran;Hwang, Seonghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.2
    • /
    • pp.163-174
    • /
    • 2021
  • Heatwaves are one of the most common phenomena originating from changes in the urban thermal environment. They are caused mainly by the evapotranspiration decrease of surface impermeable areas from increases in temperature and reflected heat, leading to a dry urban environment that can deteriorate aspects of everyday life. This study aimed to calculate daily maximum ground surface temperature affecting heatwaves, to quantify the effects of urban thermal environment control through water cycle restoration while validating its feasibility. The maximum surface temperature regression equation according to the impermeable area ratios of urban land cover types was derived. The estimated values from daily maximum ground surface temperature regression equation were compared with actual measured values to validate the calculation method's feasibility. The land cover classification and derivation of specific parameters were conducted by classifying land cover into buildings, roads, rivers, and lands. Detailed parameters were classified by the river area ratio, land impermeable area ratio, and green area ratio of each land-cover type, with the exception of the rivers, to derive the maximum surface temperature regression equation of each land cover type. The regression equation feasibility assessment showed that the estimated maximum surface temperature values were within the level of significance. The maximum surface temperature decreased by 0.0450℃ when the green area ratio increased by 1% and increased by 0.0321℃ when the impermeable area ratio increased by 1%. It was determined that the surface reduction effect through increases in the green area ratio was 29% higher than the increasing effect of surface temperature due to the impermeable land ratio.

Land Cover Classification of RapidEye Satellite Images Using Tesseled Cap Transformation (TCT)

  • Moon, Hogyung;Choi, Taeyoung;Kim, Guhyeok;Park, Nyunghee;Park, Honglyun;Choi, Jaewan
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.79-88
    • /
    • 2017
  • The RapidEye satellite sensor has various spectral wavelength bands, and it can capture large areas with high temporal resolution. Therefore, it affords advantages in generating various types of thematic maps, including land cover maps. In this study, we applied a supervised classification scheme to generate high-resolution land cover maps using RapidEye images. To improve the classification accuracy, object-based classification was performed by adding brightness, yellowness, and greenness bands by Tasseled Cap Transformation (TCT) and Normalized Difference Water Index (NDWI) bands. It was experimentally confirmed that the classification results obtained by adding TCT and NDWI bands as input data showed high classification accuracy compared with the land cover map generated using the original RapidEye images.

LAND COVER CLASSIFICATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.76-79
    • /
    • 2008
  • This study presents the use of multi-temporal JERS-1 SAR images to the land cover classification. So far, land cover classified by high resolution aerial photo and field survey and so on. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then classified land cover. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

EXTRACTION OF LAND COVER INFORMATION BY USING SAR COHERENCE IMAGES

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.475-478
    • /
    • 2007
  • This study presents the use of multi-temporal JERS-1 SAR images to extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo and field survey. The study site was located in Non-san area. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass

  • PDF

Land Cover Classification over Yellow River Basin using Land Cover Classification over Yellow River Basin using

  • Matsuoka, M.;Hayasaka, T.;Fukushima, Y.;Honda, Y.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.511-512
    • /
    • 2003
  • The Terra/MODIS data set over Yellow River Basin, China is generated for the purpose of an input parameter into the water resource management model, which has been developed in the Research Revolution 2002 (RR2002) project. This dataset is mainly utilized for the land cover classification and radiation budget analysis. In this paper, the outline of the dataset generation, and a simple land cover classification method, which will be developed to avoid the influence of cloud contamination and missing data, are introduced.

  • PDF

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

Sub-class Clustering of Land Cover over Asia considering 9-year NDVI and Climate Data

  • Lee, Ga-Lam;Han, Kyung-Soo;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.289-301
    • /
    • 2011
  • In this paper an attempt has been made to classify Asia land cover considering climatic and vegetative characteristics. The sub-class clustering based on the 13 MODIS land cover classes (except water) over Asia was performed with the climate map and the NOVI derived from SPOT 5 VGT D10 data. The unsupervised classification for the sub-class clustering was performed in each land cover class, and total 74 clusters were determined over the study area. Via these clusters, the annual variations (from 1999 to 2007) of precipitation rate and temperature were analyzed as an example by a simple linear regression model. The various annual variations (negative or positive pattern) were represented for each cluster because of the various climate zones and NOVI annual cycles. Therefore, the detailed land cover map as the classification result by the sub-class clustering in this study can be useful information in modelling works for requiring the detailed climatic and vegetative information as a boundary condition.