• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.023 seconds

Standardizing Agriculture-related Land Cover Classification Scheme using IKONOS Satellite Imagery (IKONOS 영상자료를 이용한 농업지역 토지피복 분류기준 설정)

  • Hong Seong-Min;Jung In-Kyun;Kim Seong-Joon
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.4
    • /
    • pp.253-259
    • /
    • 2004
  • The purpose of this study is to present a standardized scheme for providing agriculture-related information at various spatial resolutions of satellite images including Landsat + ETM, KOMPSAT-1 EOC, ASTER VNIR, and IKONOS panchromatic and multi-spectral images. The satellite images were interpreted especially for identifying agricultural areas, crop types, agricultural facilities and structures. The results were compared with the land cover/land use classification system suggested by National Geographic Information based on aerial photograph and Ministry of Environment based on satellite remote sensing data. As a result, high-resolution agricultural land cover map from IKONOS imageries was made out. The classification result by IKONOS image will be provided to KOMPSAT-2 project for agricultural application.

Land Surface Classification With Airborne Multi-spectral Scanner Image Using A Neuro-Fuzzy Model (뉴로-퍼지 모델을 이용한 항공다중분광주사기 영상의 지표면 분류)

  • Han, Jong-Gyu;Ryu, Keun-Ho;Yeon, Yeon-Kwang;Chi, Kwang-Hoon
    • The KIPS Transactions:PartD
    • /
    • v.9D no.5
    • /
    • pp.939-944
    • /
    • 2002
  • In this paper, we propose and apply new classification method to the remotely sensed image acquired from airborne multi-spectral scanner. This is a neuro-fuzzy image classifier derived from the generic model of a 3-layer fuzzy perceptron. We implement a classification software system with the proposed method for land cover image classification. Comparisons with the proposed and maximum-likelihood classifiers are also presented. The results show that the neuro-fuzzy classification method classifies more accurately than the maximum likelihood method. In comparing the maximum-likelihood classification map with the neuro-fuzzy classification map, it is apparent that there is more different as amount as 7.96% in the overall accuracy. Most of the differences are in the "Building" and "Pine tree", for which the neuro-fuzzy classifier was considerably more accurate. However, the "Bare soil" is classified more correctly with the maximum-likelihood classifier rather than the neuro-fuzzy classifier.

Biotope-Type Classification Considering Urban Ecosystem Structure (도시생태계 구조를 고려한 비오톱 유형 구분)

  • Kim Jeong-Ho;Han Bong-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.2 s.115
    • /
    • pp.1-17
    • /
    • 2006
  • The purpose of this study was to analyze biotope types of urban land-use patterns. Forest areas were considered according to vegetation type and potential for succession. Urban ecosystem structure was analyzed according to land use, land coverage, vegetation structure (actual vegetation, diameter at breast height, layer structure, and revetment). As a results of the classification, the biotopes were divided into 71 types according to the urban ecosystem structure. In the case of the Hanam province, the biotopes were divided into 51 types: 26 forest types; 5 swampy and grass land types; 3 farm land types; 3 types of planted land, and 8 types of urbanization.

The Utilization of Google Earth Images as Reference Data for The Multitemporal Land Cover Classification with MODIS Data of North Korea

  • Cha, Su-Young;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.483-491
    • /
    • 2007
  • One of the major obstacles to classify and validate Land Cover maps is the high cost of acquiring reference data. In case of inaccessible areas such as North Korea, the high resolution satellite imagery may be used for reference data. The objective of this paper is to investigate the possibility of utilizing QuickBird high resolution imagery of North Korea that can be obtained from Google Earth data via internet for reference data of land cover classification. Monthly MODIS NDVI data of nine months from the summer of 2004 were classified into L=54 cluster using ISODATA algorithm, and these L clusters were assigned to 7 classes - coniferous forest, deciduous forest, mixed forest, paddy field, dry field, water, and built-up areas - by careful use of reference data obtained through visual interpretation of the high resolution imagery. The overall accuracy and Kappa index were 85.98% and 0.82, respectively, which represents about 10% point increase of classification accuracy than our previous study based on GCP point data around North Korea. Thus we can conclude that Google Earth may be used to substitute the traditional reference data collection on the site where the accessibility is severely limited.

A Simple Method for Classifying Land Cover of Rice Paddy at a 1 km Grid Spacing Using NOAA-AVHRR Data (NOAA-AVHRR 자료를 이용한 1 km 해상도 벼논 피복의 간이분류법)

  • 구자민;홍석영;윤진일
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.3 no.4
    • /
    • pp.215-219
    • /
    • 2001
  • Land surface parameterization schemes for atmospheric models as well as decision support tools for ecosystem management require a frequent updating of land cover classification data for regional to global scales. Rice paddies have not been treated independently from other agricultural land classes in many classification systems, despite their atmospheric and ecological significance. A simple but improved method over conventional land cover classification schemes for rice paddy is suggested. Normalized difference vegetation index (NDVI) was calculated for the land area of South Korea at a 1km by 1 km resolution from the visible and the near-infrared channel reflectances of NOAA-AVHRR (Advanced Very High Resolution Radiometer). Monthly composite images of daily maximum NDVI were prepared for May and August, and used to classify 4 major land cover classes : urban, farmland, forests and water body. Among the pixels classified as "forests" in August, those classified as "water body" in May were assigned a "rice paddy" class. The distribution pattern of "rice paddy" pixels was very similar to the reported rice acreage of 1,455 Myons, which is the smallest administrative land unit in Korea. The correlation coefficient between the estimated and the reported acreage of Myons was 0.7, while 0.5 was calculated from the USGS classification.calculated from the USGS classification.

  • PDF

Impact of Land Use Land Cover Change on the Forest Area of Okomu National Park, Edo State, Nigeria

  • Nosayaba Osadolor;Iveren Blessing Chenge
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.3
    • /
    • pp.167-179
    • /
    • 2023
  • The extent of change in the Land use/Land cover (LULC) of Okomu National Park (ONP) and fringe communities was evaluated. High resolution Landsat imagery was used to identify the major vegetation cover/land use systems and changes around the national park and fringe communities while field visits/ground truthing, involving the collection of coordinates of the locations was carried out to ascertain the various land cover/land use types identified on the images, and the extent of change over three-time series (2000, 2010 and 2020). The change detection was analyzed using area calculation, change detection by nature and normalized difference vegetation index (NDVI). The result of the classification and analysis of the LULC Change of ONP and fringe communities revealed an alarming rate of encroachment into the protected area. All the classification features analyzed had notable changes from 2000-2020. The forest, which was the dominant LULC feature in 2000, covering about 66.19% of the area reduced drastically to 36.12% in 2020. Agricultural land increased from 6.14% in 2000 to 34.06% in 2020 while vegetation (degraded land) increased from 27.18% in 2000 to 38.89% in 2020. The magnitude of the change in ONP and surroundings showed the forest lost -247.136 km2 (50.01%) to other land cover classes with annual rate change of 10%, implying that 10% of forest land was lost annually in the area for 20 years. The NDVI classification values of 2020 indicate that the increase in medium (399.62 km2 ) and secondary high (210.17 km2 ) vegetation classes which drastically reduced the size of the high (38.07 km2 ) vegetation class. Consequent disappearance of the high forests of Okomu is inevitable if this trend of exploitation is not checked. It is pertinent to explore other forest management strategies involving community participation.

Comparison of Visual Interpretation and Image Classification of Satellite Data

  • Lee, In-Soo;Shin, Dong-Hoon;Ahn, Seung-Mahn;Lee, Kyoo-Seock;Jeon, Seong-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.3
    • /
    • pp.163-169
    • /
    • 2002
  • The land uses of Korean peninsula are very complicated and high-density. Therefore, the image classification using coarse resolution satellite images may not provide good results for the land cover classification. The purpose of this paper is to compare the classification accuracy of visual interpretation with that of digital image classification of satellite remote sensing data such as 20m SPOT and 30m TM. In this study, hybrid classification was used. Classification accuracy was assessed by comparing each classification result with reference data obtained from KOMPSAT-1 EOC imagery, air photos, and field surveys.

An Analysis of Land Cover Classification Methods Using IKONOS Satellite Image (IKONOS 영상을 이용한 토지피복분류 기법 분석)

  • Kang, Nam Yi;Pak, Jung Gi;Cho, Gi Sung;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.3
    • /
    • pp.65-71
    • /
    • 2012
  • Recently the high-resolution satellite images are helpfully using the land cover, status data for the natural resources or environment management. The effective satellite analysis process for these satellite images that require high investment can be increase the effectiveness has become increasingly important. In this Study, the statistical value of the training data is calculated and analyzed during the preprocessing. Also, that is explained about the maximum likelihood classification of traditional classification method, artificial neural network (ANN) classification method and Support Vector Machines(SVM) classification method and then the IKONOS high-resolution satellite imagery was produced the land cover map using each classification method. Each result data had to analyze the accuracy through the error matrix. The results of this study prove that SVM classification method can be good alternative of the total accuracy of about 86% than other classification method.

Land Cover Classification Based on High Resolution KOMPSAT-3 Satellite Imagery Using Deep Neural Network Model (심층신경망 모델을 이용한 고해상도 KOMPSAT-3 위성영상 기반 토지피복분류)

  • MOON, Gab-Su;KIM, Kyoung-Seop;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.252-262
    • /
    • 2020
  • In Remote Sensing, a machine learning based SVM model is typically utilized for land cover classification. And study using neural network models is also being carried out continuously. But study using high-resolution imagery of KOMPSAT is insufficient. Therefore, the purpose of this study is to assess the accuracy of land cover classification by neural network models using high-resolution KOMPSAT-3 satellite imagery. After acquiring satellite imagery of coastal areas near Gyeongju City, training data were produced. And land cover was classified with the SVM, ANN and DNN models for the three items of water, vegetation and land. Then, the accuracy of the classification results was quantitatively assessed through error matrix: the result using DNN model showed the best with 92.0% accuracy. It is necessary to supplement the training data through future multi-temporal satellite imagery, and to carry out classifications for various items.

The Study on Improving Accuracy of Land Cover Classification using Spectral Library of Hyperspectral Image (초분광영상의 분광라이브러리를 이용한 토지피복분류의 정확도 향상에 관한 연구)

  • Park, Jung-Seo;Seo, Jin-Jae;Go, Je-Woong;Cho, Gi-Sung
    • Journal of Cadastre & Land InformatiX
    • /
    • v.46 no.2
    • /
    • pp.239-251
    • /
    • 2016
  • Hyperspectral image is widely used for land cover classification because it has a number of narrow bands and allow each pixel to include much more information in comparison with previous multi-spectral image. However, Higher spectral resolution of hyperspectral image results in an increase in data volumes and a decrease in noise efficiency. SAM(Spectral Angle Mapping), a method based on vector inner product to compare spectrum distribution, is a highly valuable and popular way to analyze continuous spectrum of hyperspectral image. SAM is shown to be less accurate when it is used to analyze hyperspectral image for land cover classification using spectral library. this inaccuracy is due to the effects of atmosphere. We suggest a decision tree based method to compensate the defect and show that the method improved accuracy of land cover classification.