Toward the systematic and efficient management of national land, National Geography Institute(NGI, National mapping agency) has been producing national basemap in automated process since middle of 1980's. Under the National Geographic Information System(NGIS) Development Plan, NGI began to produce digital maps in the scales of 1:1,000, 1:5,000, 1:25,000 since 1995. However, those of digital maps that have been generated under NGIS Development Plan need to be modified and corrected due to lack of technology and experience in making digital maps. In this context, those digital maps generated are currently in great need for improving the data dictionary. It is fully appreciated in previous research that data dictionary will be a key element far users and generators of digital maps to rectify the existing problems in digital maps as well as to maximize the application of digital maps. In this paper, we analyzed existing problems in digital maps based on previous researches and interviews with engineers in different fields of geospatial engineering. And then, the existing data dictionary has been redefined and modified. In the line of modification process, a relational matrix was established fur each topographic feature defined in the existing feature classification system. This paper presents newly proposed data dictionary which conforms to newly defined feature classification system from previous research performed by NGI.
Journal of the Korea Academia-Industrial cooperation Society
/
v.19
no.3
/
pp.119-129
/
2018
The Ministry of Land, Transport and Maritime Affairs has promulgated the mandatory design of BIM for road projects of more than 50 billion won by 2020 under the Basic Plan for the Sixth Construction Technology Promotion. As a result, major public clients are attempting to implement BIMs that are appropriate to the situation of each institution. On the other hand, it is difficult to design and construct a proper BIM and accumulate BIM information of the ordering organization because the technical guidelines and standard classification system that can perform BIM effectively have not been presented sufficiently. The characteristics of the road should be managed systematically, e.g., atypical objects, such as earthworks, which are constantly changing along a line; large objects, such as bridges and tunnels; and facilities, such as signs and soundproof walls. To achieve this, a multitude of standard systems should be developed and disseminated, but there have been insufficient studies on practical methods. To solve this problem, this study developed a BIM standard object classification system in the road sector to meet the international standard, accommodate a multi-dimensional information system, and provide a more effective BIM standard information environment that can be utilized easily by practitioners.
The purpose of this study is to select the study area, which will be formed into Daegu Science Park as an national industrial complex, and to assess the landscape value based on biotop classification with different polygon forms, and to develop and computerize Biotop Value Assessment Tool (B-VAT) based on GIS. The result is as follows. First, according to the result of biotop classification based on an advanced analysis on preliminary data, a field study, and a literature review, total 13 biotop groups such as forrest biotop groups and total 63 biotop types were classified. Second, based on the advanced research on landscape value assessment model of biotop, we development biotop value assessment tool by using visual basic programming language on the ArcGIS. The first application result with B-VAT showed that the first grade was classified into 19 types including riverside forest(BE), the second grade 12 types including artificial plantation(ED), and the third class, the fourth grade, and the fifth grade 12 types, 2 types, and 18 types respectively. Also, according to the second evaluation result with above results, we divided a total number of 31 areas and 34 areas, which had special meaning for landscape conservation(1a, 1b) and which had meaning for landscape conservation(2a, 2b, 2c). As such, biotop type classification and an landscape value evaluation, both of which were suggested from the result of the study, will help to scientifically understand a landscape value for a target land before undertaking reckless development. And it will serve to provide important preliminary data aimed to overcome damaged landscape due to developed and to manage a landscape planning in the future. In particular, we expect that B-VAT based on GIS will help overcome the limitations of applicability for of current value evaluation models, which are based on complicated algorithms, and will be a great contribution to an increase in convenience and popularity. In addition, this will save time and improve the accuracy for hand-counting. However, this study limited to aesthetic-visual part in biotop assessment. Therefore, it is certain that in the future research comprehensive assessment should be conducted with conservation and recreation view.
This study aimed to early detect damaged trees by pine wilt disease using the vegetation indices of UAV images. The location data of 193 pine wilt disease trees were constructed through field surveys and vegetation index analyses of NDVI, GNDVI, NDRE and SAVI were performed using multi-spectral UAV images at the same time. K-Means algorithm was adopted to classify damaged trees and confusion matrix was used to compare and analyze the classification accuracy. The results of the study are summarized as follows. First, the overall accuracy of the classification was analyzed in order of NDVI (88.04%, Kappa coefficient 0.76) > GNDVI (86.01%, Kappa coefficient 0.72) > NDRE (77.35%, Kappa coefficient 0.55) > SAVI (76.84%, Kappa coefficient 0.54) and showed the highest accuracy of NDVI. Second, K-Means unsupervised classification method using NDVI or GNDVI is possible to some extent to find out the damaged trees. In particular, this technique is to help early detection of damaged trees due to its intensive operation, low user intervention and relatively simple analysis process. In the future, it is expected that the utilization of time series images or the application of deep learning techniques will increase the accuracy of classification.
To increase the utilization of soil survey results, classification of morphological types of paddy soils which was consisted of land-form, texture, and drainage classes etc. was attempted as an interpretive classification system. The paddy soils could be classified into 37 types. Among the types, the "Lfi(Fine loamy textured semi-wet paddy on local valley and fans)" acreage of about 224 thousand ha, "Lfd(Fine loamy textured dry paddy on local valley and fans)" 160 thousand ha. "Lmi(Coarse loamy textured semi-wet paddy on local valley and fans)" 112 thousand ha, and "Lkd(Loamy skeletal dry paddy on local valley and fans)" 93 thousand ha, respectively were the dominant types. The possibility of double cropping, plastic film house, green manure cropping etc., and that for soil managements such as application of raw straw or compost, deep plowing or adding fine earth materials, mole drainage, susceptibility to erosion or reduction injury etc. for each types were recommended.
Journal of the Korean Association of Geographic Information Studies
/
v.18
no.1
/
pp.48-63
/
2015
In this study, we introduce various hyperspectral data processing techniques for the monitoring of shallow and coastal waters to enlarge the application range and to improve the accuracy of the end results in Korea. Unlike land, more accurate atmospheric correction is needed in coastal region showing relatively low reflectance in visible wavelengths. Sun-glint which occurs due to a geometry of sun-sea surface-sensor is another issue for the data processing in the ocean application of hyperspectal imagery. After the preprocessing of the hyperspectral data, a semi-analytical algorithm based on a radiative transfer model and a spectral library can be used for bathymetry mapping in coastal area, type classification and status monitoring of benthos or substrate classification. In general, semi-analytical algorithms using spectral information obtained from hyperspectral imagey shows higher accuracy than an empirical method using multispectral data. The water depth and quality are constraint factors in the ocean application of optical data. Although a radiative transfer model suggests the theoretical limit of about 25m in depth for bathymetry and bottom classification, hyperspectral data have been used practically at depths of up to 10 m in shallow and coastal waters. It means we have to focus on the maximum depth of water and water quality conditions that affect the coastal applicability of hyperspectral data, and to define the spectral library of coastal waters to classify the types of benthos and substrates.
Choi, Seokkeun;Lee, Soungki;Kang, Yeonbin;Choi, Do Yeon;Choi, Juweon
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.6
/
pp.671-679
/
2020
In order to increase the food self-sufficiency rate, monitoring and analysis of crop conditions in the cultivated area is important, and the existing measurement methods in which agricultural personnel perform measurement and sampling analysis in the field are time-consuming and labor-intensive for this reason inefficient. In order to overcome this limitation, it is necessary to develop an efficient method for monitoring crop information in a small area where many exist. In this study, RGB images acquired from unmanned aerial vehicles and vegetation index calculated using RGB image were applied as deep learning input data to classify complex upland crops in small farmland. As a result of each input data classification, the classification using RGB images showed an overall accuracy of 80.23% and a Kappa coefficient of 0.65, In the case of using the RGB image and vegetation index, the additional data of 3 vegetation indices (ExG, ExR, VDVI) were total accuracy 89.51%, Kappa coefficient was 0.80, and 6 vegetation indices (ExG, ExR, VDVI, RGRI, NRGDI, ExGR) showed 90.35% and Kappa coefficient of 0.82. As a result, the accuracy of the data to which the vegetation index was added was relatively high compared to the method using only RGB images, and the data to which the vegetation index was added showed a significant improvement in accuracy in classifying complex crops.
KSCE Journal of Civil and Environmental Engineering Research
/
v.29
no.3D
/
pp.419-431
/
2009
The core of this study is finding out the efficient band selection or extraction method discovering the optimal spectral bands when applying canonical correlation classifier (CCC) to hyperspectral data. The optimal efficient bands grounded on each separability decision technique are selected using Multispec$^{(C)}$ software developed by Purdue university of USA. Total 6 separability decision techniques are used, which are Divergence, Transformed Divergence, Bhattacharyya, Mean Bhattacharyya, Covariance Bhattacharyya, Noncovariance Bhattacharyya. For feature extraction, PCA transformation and MNF transformation are accomplished by ERDAS Imagine and ENVI software. For the comparison and assessment on the effect of feature selection and feature extraction, land cover classification is performed by CCC. The overall accuracy of CCC using the firstly selected 60 bands is 71.8%, the highest classification accuracy acquired by CCC is 79.0% as the case that executes CCC after appling Noncovariance Bhattacharyya. In conclusion, as a matter of fact, only Noncovariance Bhattacharyya separability decision method was valuable as feature selection algorithm for hyperspectral image classification depended on CCC. The lassification accuracy using other feature selection and extraction algorithms except Divergence rather declined in CCC.
This study was conducted to investigate the changes of land use and stand volume around Mt. Kuem-O by B/W aerial photographs in 1979 and B/W Infrared aerial photographs in 1988. The results obtained in this study were as follow : 1. In classification of forest type on aerial photographs, coniferous stand was dark tone and hardwood stand was light tone and irregularly rounded crowns. 2. In classification of coniferous stand, Pinus densiflora was narraw cone and rounded tip of crowns and rough texture, Pinus rigida was irregulary rounded and broadly conical crowns. 3. To refer to changes of forest land area, mixed forest was changed into P. desiflora (687ha), P. rigida (130ha) and hardwood stand (219ha). 4. The regression equations between crown diameter and DBH were significant at 1% level by F-test in all stands. So the equation, D=a+bCD was used to estimate DBH. 5. The tree height curve equations were significant at 1% level by F-test in all stands. To estimate tree height the equation, logH=loga+blogD was adopted in P. densiflora and L. leptolepis and $H=a-bD+cD^2$ was adopted in P. rigida, hardwood stand and mixed forest. 6. The highest volume per hectare was observed in L. leptolepis and mixed forest showed the greatest growth percentage, while the lowest volume per hectare and growth percentage were observed in hardwood stand.
Journal of the Korean Society of Hazard Mitigation
/
v.4
no.4
s.15
/
pp.35-42
/
2004
Accurate classification of water area is a preliminary step to analyze the flooded area and damages caused by flood. This is essential process for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. In this paper, flooded areas was classified using 1:25,000 land use map and a RADARSAT image of Ok-Chun and Bo-Eun located in Chung-Book province taken in 12th of August, 1998. Then we analyzed the flood area based on GIS. A RADARSAT image was used to classify the flooded areas with slope theme generated from digital elevation model. In processing on a RADARSAT image, the geometric correction was performed by a backwardgeocoding method based on ephemeris data and one control point for near real time flood area analysis.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.