Journal of the Korean Society for Aviation and Aeronautics
/
v.27
no.1
/
pp.26-33
/
2019
It is necessary to establish a UAV pilot license and training system because the number of UAV-related accidents has rapidly risen. Most of accidents are caused by the human factors such as the lack of control skill and aviation knowledge. In this paper, we investigate licensing policy of small UAV pilots and examine the level of UAV licensing system and classification criteria based on comparative analysis of national cases such as USA, UK and China. Recently, the Ministry of Land, Infrastructure and Transport Affairs is planning to improve the safety regulation by taking into account the risk level of the licensing system, which has been classified according to the existing weight and commercial purpose. From the comparative analysis, we suggested a improvement policy for UAV licensing system in the view of pilot license segmentation, beyond Visual Line-of-sight flight and high risk UAV for non-commercial.
The objective of this research was to introduce the TPI approach for interpreting land-forms of mountain forests in South Korea. We develop an objective procedure to decide the scale factor as a basic analytical unit in land-form classification of rugged mountain areas using TPI. In order to determine the scale factor associated with the pattern of slope profiles, the gradient variance curve was derived from a revised hypsometric curve developed using the relief energy of topographic profiles. Using the gradient variance curve, found was the grid size with which the change in relief energy got the peak point. The grid size at the peak point was determined as the scale factor for the study area. In order to investigate the performance of the procedure based on the gradient variance curve, it was applied to determination of the site-specific scale factors of 3 different terrain conditions; highly-rugged, moderately-rugged and relatively less-rugged. The TPI associated with the corresponding scale factors by study site was, then, determined and used in classifying the land-forms. According to the results of this study, the scale factor gets shorter with more rugged terrain conditions. It was also found that the numbers of valleys and ridges estimated with TPI show almost the same trends as those of the observed and the scale factors tends to approach to the mean distance of ridges.
Mosquitos serve as vectors for diseases, causing inconvenience as well as a threat to human life and health. Concern about mosquitos introducing and spreading new diseases has been intensifying. We observed a variety of mosquito habitats based on land cover classification from Korea's Ministry of Environment, and the mosquito species that could appear were classified according to the each habitat type. Finally, we suggested the best control methods for each type of habitat considering habitat characteristics and the ecological traits of mosquitos. Urban areas harbor various habitats for pests, contributing significantly to mosquito habitats. Control must be performed regarding larva and adults because various sources for habitats exist. Public mosquito control programs such as educational training, as well as information brochures can be effective in managing mosquito populations and public health. Agricultural areas show high densities of mosquito larva to lentic zones such as reservoirs, wetlands, paddy fields. So, biological control using natural predators may be effective in controlling mosquito populations. Forests are major habitats for Aedes albopctus, so physical controls should be deployed for residents living nearby, and excessive deforestation should be minimized. Other areas including aquatic ecosystems should be adopted regarding biological control using Bti (Bacillus thuringiensis var. israelensis) and chemical control for eradicating mosquitos. We classified habitats into four types of land cover patterns considering ecological traits and habitat preference, and suggest adequate control methods for each habitat type. Our suggestion can be used to positively contribute toward effective managing mosquito's density and reducing the damage to public health.
The objectives of this study are to produce level 3 type LULC map and analysis of phenological features of North Korea, ISODATA clustering of the 88scenes of MVC of MODIS NDVI in 2008 and 8scenes in 2009 was carried out. Analysis of phenological phases based mapping method was conducted, In level 2 type map, the confusion matrix was summarized and Kappa coefficient was calculated. Total of 27 typical habitat types that represent the dominant species or vegetation density that cover land surface of North Korea in 2008 were made. The total of 27 classes includes the 17 forest biotopes, 7 different croplands, 2 built up types and one water body. Dormancy phase of winter (${\sigma}^2$ = 0.348) and green up phase in spring (${\sigma}^2$ = 0.347) displays phenological dynamics when much vegetation growth changes take place. Overall accuracy is (851/955) 85.85% and Kappa coefficient is 0.84. Phenological phase based mapping method was possible to minimize classification error when analyzing the inaccessible land of North Korea.
The research was carried out for prediction of the potential habitats of warm-temperate evergreen broad-leaved trees under the current climate(1961~1990) and three climate change scenario(2081~2100) (CCCMA-A2, CSIRO-A2 and HADCM3-A2) using classification tree(CT) model. Presence/absence records of warm-temperate evergreen broad-leaved trees were extracted from actual distribution data as response variables, and four climatic variables (warmth index, WI; minimum temperature of the coldest month, TMC; summer precipitation, PRS; and winter precipitation, PRW) were used as predictor variables. Potential habitats(PH) was predicted 28,230$km^2$ under the current climate and 77,140~89,285$km^2$ under the three climate change scenarios. The PH masked by land use(PHLU) was predicted 8,274$km^2$ and the proportion of PHLU within PH was 29.3% under the current climate. The PH masked by land use(PHLU) was predicted 35,177~45,170$km^2$ and increased 26.9~36.9% under the three climate change scenarios. The expansion of warm-temperate evergreen broad-leaved trees by climate change progressed habitat fragmentation by restriction of land use. The habitats increase of warm-temperate evergreen broad-leaved trees had been expected competitive with warm-temperate deciduous broadleaf forest and suggested the expand and northward shift of warm-temperate evergreen broad-leaved forest zone.
Journal of Korean Society for Atmospheric Environment
/
v.22
no.5
/
pp.661-678
/
2006
Products developed in this research is a software which can transfer the type of shape(.shp) into the type of ascii using the land cover data and the topography data in the metropolitan area of Seoul. In addition, it can calculate the $CO_2$ flux according to distribution of plants within the land cover data. The $CO_2$ flux is calculated by the experimental equation which is compose of the meteorological parameters such as the solar radiation and the air temperature. The net flux was shown in about $-19ton/km^2$ by removing $CO_2$ through the photosynthesis during daytime, and in 2 ton/km2 by producing it through the respiration during nighttime on 10 August 2004, the maximum day of air temperature during the period of 3yr(2001 to 2004), in the metropolitan area of Seoul. Spatial distribution of the air temperature and the wind field is simulated by substituting the middle classification of the land cover map data, upgraded by the Korean Ministry of Environment(KME), for the land-use data of the United States Geological Survey(USGS) within the Meteorological Mesoscale Model Version 5(MM5) on 10 August 2006 in the metropolitan area of Seoul. Difference of the air temperature between both data was shown in the maximum range of $-2^{\circ}C\;to\;2.9^{\circ}C$, and the air temperature due to the land use data of KME was higher than that of USGS in average $0.4^{\circ}C$. Also, those of wind vectors were meanly lower than that of USGS in daytime and nighttime. Furthermore, the hourly time series of Volatile Organic Components(VOCs) is calculated by using the Biosphere Emission and Interaction System Version 2(BEIS2) including the new land cover data and the meteorological parameters such as the air temperature and so]ar insolation. It is possible to calculate the concentration of ozone due to the biogenic emission of VOCs.
Kim, Yeseul;Park, No-Wook;Hong, Sukyoung;Lee, Kyungdo;Yoo, Hee Young
Korean Journal of Remote Sensing
/
v.30
no.4
/
pp.493-503
/
2014
A hierarchical classification scheme, which can reduce the spectral ambiguity and also reflect crop cultivation patterns from past land-cover maps, is presented for the purpose of the early production of crop classification maps in large-scale crop areas. Specifically, the effects of mixed pixels are minimized not only by applying a hierarchical classification approach based on different spectral characteristics from crop growth cycles, but also by considering temporal contextual information derived from past crop cultivation patterns. The applicability of the presented classification scheme was evaluated by a case study of Iowa State in USA with time-series MODIS 250 m Normalized Difference Vegetation Index(NDVI) data sets and past Cropland Data Layers(CDLs). Corn and soybean, which are major crop types in the study area and also display spectral similarity, could be properly classified by applying different classification stages and accounting for past crop cultivation patterns. The classification result by the presented scheme showed increases of minimum 7.68%p and maximum 20.96%p in overall accuracy, compared with one based on purely spectral information. In addition, the combination of temporal contextual information during classification was less affected by the number of NDVI data sets and the best overall accuracy of 86.63% was achieved. Thus, it is expected that this classification scheme can be effectively used for the early production of large-area crop classification maps in major feed-grain importing countries.
The objective of this study is to develop the new vehicle classification algorithm and minimize classification errors. The existing vehicle classification algorithm collects data from loop and piezo sensors according to the specification("Vehicle classification guide for traffic volume survey" 2006) given by the Ministry of Land, Transport and Maritime Affairs. The new vehicle classification system collects the vehicle length, distance between axles, axle type, wheel-base and tire type to minimize classification error. The main difference of new system is the "Wandering" sensor which is capable of measuring the wheel-base and tire type(single or dual). The wandering sensor obtains the wheel-base and tire type by detecting both left and right tire imprint. Verification tests were completed with the total traffic volume of 762,420 vehicles in a month for the new vehicle classification algorithm. Among them, 47 vehicles(0.006%) were not classified within 12 vehicle types. This results proves very high level of classification accuracy for the new system. Using the new vehicle classification algorithm will improve the accuracy and it can be broadly applicable to the road planning, design, and management. It can also upgrade the level of traffic research for the road and transportation infrastructure.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.38
no.1
/
pp.23-33
/
2020
Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.
To address the requirements of gap analysis for species protection, as well as the needs of state and federal agencies for detailed digital land cover, a 43-class map at the vegetation alliance level was created for the state of Kansas using multi-temporal Thematic Mapper imagery. The mapping approach included the use of three-date multi-seasonal imagery, a two-stage classification approach that first masked out cropland areas using unsupervised classification and then mapped natural vegetation with supervised classification, visualization techniques utilizing a map of small multiples and field experts, and extensive use of ancillary data in post-hoc processing. Accuracy assessment was conducted at three levels of generalization (Anderson Level I, vegetation formation, and vegetation alliance) and three cross-tabulation approaches. Overall accuracy ranged from 51.7% to 89.4%, depending on level of generalization, while accuracy figures for individual alliance classes varied by area covered and level of sampling.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.