DOI QR코드

DOI QR Code

Early Production of Large-area Crop Classification Map using Time-series Vegetation Index and Past Crop Cultivation Patterns - A Case Study in Iowa State, USA -

시계열 식생지수와 과거 작물 재배 패턴을 이용한 대규모 작물 분류도의 조기 제작 - 미국 아이오와 주 사례연구 -

  • Kim, Yeseul (Department of Geoinformatic Engineering, Inha University) ;
  • Park, No-Wook (Department of Geoinformatic Engineering, Inha University) ;
  • Hong, Sukyoung (Climate Change & Agroecology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Kyungdo (Climate Change & Agroecology Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Yoo, Hee Young (Geoinformatic Engineering Research Institute, Inha University)
  • 김예슬 (인하대학교 지리정보공학과) ;
  • 박노욱 (인하대학교 지리정보공학과) ;
  • 홍석영 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 이경도 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 유희영 (인하대학교 지리정보공학연구소)
  • Received : 2014.07.31
  • Accepted : 2014.08.20
  • Published : 2014.08.31

Abstract

A hierarchical classification scheme, which can reduce the spectral ambiguity and also reflect crop cultivation patterns from past land-cover maps, is presented for the purpose of the early production of crop classification maps in large-scale crop areas. Specifically, the effects of mixed pixels are minimized not only by applying a hierarchical classification approach based on different spectral characteristics from crop growth cycles, but also by considering temporal contextual information derived from past crop cultivation patterns. The applicability of the presented classification scheme was evaluated by a case study of Iowa State in USA with time-series MODIS 250 m Normalized Difference Vegetation Index(NDVI) data sets and past Cropland Data Layers(CDLs). Corn and soybean, which are major crop types in the study area and also display spectral similarity, could be properly classified by applying different classification stages and accounting for past crop cultivation patterns. The classification result by the presented scheme showed increases of minimum 7.68%p and maximum 20.96%p in overall accuracy, compared with one based on purely spectral information. In addition, the combination of temporal contextual information during classification was less affected by the number of NDVI data sets and the best overall accuracy of 86.63% was achieved. Thus, it is expected that this classification scheme can be effectively used for the early production of large-area crop classification maps in major feed-grain importing countries.

이 논문에서는 대규모 작물 재배 지역의 작물 분류도의 조기 제작을 목적으로 분광학적 혼재를 줄이고, 과거 토지피복도의 작물 재배 패턴을 반영할 수 있는 계층적 분류 방법론을 제안하였다. 특히 작물 생육 주기로부터 다른 분광 특성을 고려한 계층적 분류 접근을 적용하고, 과거 작물 재배 패턴으로부터 추출된 시간적 문맥 정보를 함께 고려함으로써 분광 혼재가 두드러진 화소의 영향을 줄일 수 있다. 제안 분류 기법의 적용성을 평가하기 위해 미국 아이오와 주 전체를 대상으로 시계열 MODIS 250 m 정규식생지수 자료와 과거 crop data layer를 사용하는 사례 연구를 수행하였다. 사례 연구를 통해 다른 분류 단계와 과거 작물 재배 패턴을 고려함으로써 대상 지역의 주요 재배 작물이면서 분광학적 유사도가 두드러진 콩과 옥수수를 효과적으로 구분할 수 있었다. 그리고 분광 정보만을 이용한 분류 결과에 비해 제안 기법이 최소 7.68%p에서 최대 20.96%p의 향상된 분류 정확도를 보였다. 또한 분류 단계에서 시간적 문맥 정보를 결합함으로써 사용 NDVI 자료의 수에 영향을 덜 받는 가장 높은 분류 정확도(최대 전체 정확도: 86.63%)를 얻을 수 있었다. 따라서 제안 분류 기법은 주요 곡물 수입국의 대규모 작물 구분도의 조기 제작에 유용하게 사용될 수 있을 것으로 기대된다.

Keywords

References

  1. Boryan, C., Z. Yang, R. Mueller, and M. Craig, 2011. Monitoring US agriculture: the US Department of Agriculture, National Agricultural Statistics Service, Cropland Data Layer program, Geocarto International, 26(5): 341-358. https://doi.org/10.1080/10106049.2011.562309
  2. Chang, J., M.C. Hansesn, K. Pittman, M. Carroll, and C. Dimiceli, 2007. Corn and soybean mapping in the United States using MODIS time-series data sets, Agronomy Journal, 99(6): 1654-1664. https://doi.org/10.2134/agronj2007.0170
  3. Cristianini, N. and J. Shawe-taylor, 2000. An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, UK.
  4. Hall, F.G. and G.D. Badwar, 1987. Signature-extendible technology: global space-based crop recognition, IEEE Transactions on Geoscience and Remote Sensing, 25(1): 93-103.
  5. Hong, S., B.-K. Min, J.-M. Lee, Y. Kim, and K. Lee, 2012. Estimation of paddy field area in North Korea using RapidEye images, Korean Journal of Soil Science and Fertilizer, 45(6): 1194-1202 (in Korean with English abstract). https://doi.org/10.7745/KJSSF.2012.45.6.1194
  6. Jang, J.-D., 2006. Rural land cover classification using multispectral image and LIDAR data, Korean Journal of Remote Sensing, 22(2): 101-110 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2006.22.2.101
  7. Krishnan, S., 2008. The tau model for data redundancy and information combination in earth sciences: theory and application, Mathematical Geology, 40(6): 705-727.
  8. Lee, K., S. Hong, and Y. Kim, 2012. Farmland use mapping using high resolution images and land use change analysis, Korean Journal of Soil Science and Fertilizer, 45(6): 1164-1172 (in Korean with English abstract). https://doi.org/10.7745/KJSSF.2012.45.6.1164
  9. Lee, M.-S., S.-J. Kim, H.-S. Shin, J.-K. Park, and J.-H. Park, 2009. Extraction of agricultural land use and crop growth information using KOMPSAT-3 resolution satellite image, Korean Journal of Remote Sensing, 25(5): 411-421 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2009.25.5.411
  10. Lee, S.-W. and N.-W. Park, 2011. Application of Bayesian probability rule to the combination of spectral and temporal contextual information in land-cover classification, Korean Journal of Remote Sensing, 27(4): 445-455 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2011.27.4.445
  11. McNairn, H., J. Shang, C. Champagne, and X. Jiao, 2009. TerraSAR-X and RADARSAT-2 for crop classification and acreage estimation, Proc. of 2009 IEEE International Geoscience and Remote Sensing Symposium, Cape Town, July 12-17, vol. 2, pp. 898-901.
  12. Park, N.-W., 2010. Accounting for temporal contextual information in land-cover classification with multi-sensor SAR data, International Journal of Remote Sensing, 31(2): 281-298. https://doi.org/10.1080/01431160902882652
  13. Turker, M. and M. Arikan, 2005. Sequential masking classification of multi-temporal Landsat7 ETM+ images for field-based crop mapping in Karacabey, Turkey, International Journal of Remote Sensing, 26(17): 3813-3830. https://doi.org/10.1080/01431160500166391
  14. Wardlow, B.D. and S.L. Egbert, 2008. Large-area crop mapping using time-series MODIS 250m NDVI data: An assessment for the U.S. Central Great Plains, Remote Sensing of Environment, 112(3): 1096-1116. https://doi.org/10.1016/j.rse.2007.07.019
  15. Yoo, S.-H., J.-B. Im, J.-Y. Choi, and S.-H. Lee, 2012. Estimation of agricultural water and land required to substitute the import of feed-grain for domestic production, Journal of the Korean Society of International Agriculture, 24(3): 259-264 (in Korean with English abstract).

Cited by

  1. MODIS Data-based Crop Classification using Selective Hierarchical Classification vol.32, pp.3, 2016, https://doi.org/10.7780/kjrs.2016.32.3.3
  2. Self-Learning Based Land-Cover Classification Using Sequential Class Patterns from Past Land-Cover Maps vol.9, pp.9, 2017, https://doi.org/10.3390/rs9090921
  3. 능동 학습과 시간 문맥 정보를 이용한 작물 재배지역 분류 vol.18, pp.3, 2014, https://doi.org/10.11108/kagis.2015.18.3.076
  4. 고랭지밭 현황 파악을 위한 Terra MODIS 위성영상 적용 vol.20, pp.3, 2014, https://doi.org/10.11108/kagis.2017.20.3.001
  5. 계층분류 기법을 이용한 위성영상 기반의 동계작물 구분도 작성 vol.33, pp.5, 2014, https://doi.org/10.7780/kjrs.2017.33.5.2.7
  6. 식생 활력도를 고려한 드론 기반의 식생지수 분석 vol.23, pp.2, 2014, https://doi.org/10.11108/kagis.2020.23.2.021
  7. UAV, a Farm Map, and Machine Learning Technology Convergence Classification Method of a Corn Cultivation Area vol.11, pp.8, 2014, https://doi.org/10.3390/agronomy11081554