• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.028 seconds

Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map (국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신)

  • Soungki, Lee;Seok Keun, Choi;Sintaek, Noh;Noyeol, Lim;Juweon, Choi
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.4
    • /
    • pp.267-275
    • /
    • 2015
  • Those land cover maps have widely been used in various fields, such as environmental studies, military strategies as well as in decision-makings. This study proposes a method to extract training data, automatically and classify the cover using ingle satellite images and national land cover maps, provided by the Ministry of Environment. For this purpose, as the initial training data, those three were used; the unsupervised classification, the ISODATA, and the existing land cover maps. The class was classified and named automatically using the class information in the existing land cover maps to overcome the difficulty in selecting classification by each class and in naming class by the unsupervised classification; so as achieve difficulty in selecting the training data in supervised classification. The extracted initial training data were utilized as the training data of MLC for the land cover classification of target satellite images, which increase the accuracy of unsupervised classification. Finally, the land cover maps could be extracted from updated training data that has been applied by an iterative method. Also, in order to reduce salt and pepper occurring in the pixel classification method, the MRF was applied in each repeated phase to enhance the accuracy of classification. It was verified quantitatively and visually that the proposed method could effectively generate the land cover maps.

Land Cover Classification of a Wide Area through Multi-Scene Landsat Processing (다량의 Landsat 위성영상 처리를 통한 광역 토지피복분류)

  • 박성미;임정호;사공호상
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.3
    • /
    • pp.189-197
    • /
    • 2001
  • Generally, remote sensing is useful to obtain the quantitative and qualitative information of a wide area. For monitoring earth resources and environment, land cover classification of remotely sensed data are needed over increasingly larger area. The objective this study is to propose the process for land cover classification method over a wide area using multi-scene satellite data. Land cover of Korean peninsula was extracted from a Landsat TM and ETM+ mosaic created from 23 scenes at 100-meter resolution. Well-known techniques that used to general image processing and classification are applied to this wide area classification. It is expected that these process is very useful to promptly and efficiently grasp of small scale spatial information such as national territorial information.

Land Cover Classification over East Asian Region Using Recent MODIS NDVI Data (2006-2008) (최근 MODIS 식생지수 자료(2006-2008)를 이용한 동아시아 지역 지면피복 분류)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.415-426
    • /
    • 2010
  • A Land cover map over East Asian region (Kongju national university Land Cover map: KLC) is classified by using support vector machine (SVM) and evaluated with ground truth data. The basic input data are the recent three years (2006-2008) of MODIS (MODerate Imaging Spectriradiometer) NDVI (normalized difference vegetation index) data. The spatial resolution and temporal frequency of MODIS NDVI are 1km and 16 days, respectively. To minimize the number of cloud contaminated pixels in the MODIS NDVI data, the maximum value composite is applied to the 16 days data. And correction of cloud contaminated pixels based on the spatiotemporal continuity assumption are applied to the monthly NDVI data. To reduce the dataset and improve the classification quality, 9 phenological data, such as, NDVI maximum, amplitude, average, and others, derived from the corrected monthly NDVI data. The 3 types of land cover maps (International Geosphere Biosphere Programme: IGBP, University of Maryland: UMd, and MODIS) were used to build up a "quasi" ground truth data set, which were composed of pixels where the three land cover maps classified as the same land cover type. The classification results show that the fractions of broadleaf trees and grasslands are greater, but those of the croplands and needleleaf trees are smaller compared to those of the IGBP or UMd. The validation results using in-situ observation database show that the percentages of pixels in agreement with the observations are 80%, 77%, 63%, 57% in MODIS, KLC, IGBP, UMd land cover data, respectively. The significant differences in land cover types among the MODIS, IGBP, UMd and KLC are mainly occurred at the southern China and Manchuria, where most of pixels are contaminated by cloud and snow during summer and winter, respectively. It shows that the quality of raw data is one of the most important factors in land cover classification.

Land use classification using CBERS-1 data

  • Wang, Huarui;Liu, Aixia;Lu, Zhenhjun
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.709-714
    • /
    • 2002
  • This paper discussed and analyzed results of different classification algorithms for land use classification in arid and semiarid areas using CBERS-1 image, which in case of our study is Shihezi Municipality, Xinjiang Province. Three types of classifiers are included in our experiment, including the Maximum Likelihood classifier, BP neural network classifier and Fuzzy-ARTMAP neural network classifier. The classification results showed that the classification accuracy of Fuzzy-ARTMAP was the best among three classifiers, increased by 10.69% and 6.84% than Maximum likelihood and BP neural network, respectively. Meanwhile, the result also confirmed the practicability of CBERS-1 image in land use survey.

  • PDF

An Uncertainty Analysis of Topographical Factors in Paddy Field Classification Using a Time-series MODIS (시계열 MODIS 영상을 이용한 논 분류와 지형학적 인자에 따른 불확실성 분석)

  • Yoon, Sung-Han;Choi, Jin-Yong;Yoo, Seung-Hwan;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.5
    • /
    • pp.67-77
    • /
    • 2007
  • The images of MODerate resolution Imaging Spectroradiometer (MODIS) that provide wider swath and shorter revisit frequency than Land Satellite (Landsat) and Satellite Pour I' Observation de la Terre (SPOT) has been used fer land cover classification with better spatial resolution than National Oceanic and Atmosphere Administration/Advanced Very High Resolution Radiometer (NOAA/AVHRR)'s images. Due to the advantages of MODIS, several researches have conducted, however the results for the land cover classification using MODIS images have less accuracy of classification in small areas because of low spatial resolution. In this study, uncertainty of paddy fields classification using MODIS images was conducted in the region of Gyeonggi-do and the relation between this uncertainty of estimating paddy fields and topographical factors was also explained. The accuracy of classified paddy fields was compared with the land cover map of Environmental Geographic Information System (EGIS) in 2001 classified using Landsat images. Uncertainty of paddy fields classification was analyzed about the elevation and slope from the 30m resolution Digital Elevation Model (DEM) provided in EGIS. As a result of paddy classification, user's accuracy was about 41.5% and producer's accuracy was 57.6%. About 59% extracted paddy fields represented over 50 uncertainty in one hundred scale and about 18% extracted paddy fields showed 100 uncertainty. It is considered that several land covers mixed in a MODIS pixel influenced on extracted results and most classified paddy fields were distributed through elevation I, II and slope A region.

Hierarchical Land Cover Classification using IKONOS and AIRSAR Images (IKONOS와 AIRSAR 영상을 이용한 계층적 토지 피복 분류)

  • Yeom, Jun-Ho;Lee, Jeong-Ho;Kim, Duk-Jin;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.4
    • /
    • pp.435-444
    • /
    • 2011
  • The land cover map derived from spectral features of high resolution optical images has low spectral resolution and heterogeneity in the same land cover class. For this reason, despite the same land cover class, the land cover can be classified into various land cover classes especially in vegetation area. In order to overcome these problems, detailed vegetation classification is applied to optical satellite image and SAR(Synthetic Aperture Radar) integrated data in vegetation area which is the result of pre-classification from optical image. The pre-classification and vegetation classification were performed with MLC(Maximum Likelihood Classification) method. The hierarchical land cover classification was proposed from fusion of detailed vegetation classes and non-vegetation classes of pre-classification. We can verify the facts that the proposed method has higher accuracy than not only general SAR data and GLCM(Gray Level Co-occurrence Matrix) texture integrated methods but also hierarchical GLCM integrated method. Especially the proposed method has high accuracy with respect to both vegetation and non-vegetation classification.

A Study on the Development of Urban Land Use Classification Coding System (도시토지이용분류 코딩체계 개발에 관한 연구)

  • 고준환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.385-393
    • /
    • 2001
  • Urban land use information is the base data for the urban planning, district-level planning, traffic impact assessment and environmental impact assessment, etc. The level of detail of the current land use information is not enough to analysis and planning. In this study, the status and problems of the current land use information is analysed. The advanced abroad cases, such as LBCS(Land Based Classification System) of American Planning Association, are studied. The purpose of this study is to develop the coding system for urban land use information classification. Through this system, it is anticipated to standardization of land use classification system and improvement of data compactability.

  • PDF

Linear Spectral Mixture Analysis of Landsat Imagery for Wetland land-Cover Classification in Paldang Reservoir and Vicinity

  • Kim, Sang-Wook;Park, Chong-Hwa
    • Korean Journal of Remote Sensing
    • /
    • v.20 no.3
    • /
    • pp.197-205
    • /
    • 2004
  • Wetlands are lands with a mixture of water, herbaceous or woody vegetation and wet soil. And linear spectral mixture analysis (LSMA) is one of the most often used methods in handling the spectral mixture problem. This study aims to test LSMA is an enhanced routine for classification of wetland land-covers in Paldang reservoir and vicinity (paldang Reservoir) using Landsat TM and ETM+ imagery. In the LSMA process, reference endmembers were driven from scatter-plots of Landsat bands 3, 4 and 5, and a series of endmember models were developed based on green vegetation (GV), soil and water endmembers which are the main indicators of wetlands. To consider phenological characteristics of Paldang Reservoir, a soil endmember was subdivided into bright and dark soil endmembers in spring and a green vegetation (GV) endmember was subdivided into GV tree and GV herbaceous endmembers in fall. We found that LSMA fractions improved the classification accuracy of the wetland land-cover. Four endmember models provided better GV and soil discrimination and the root mean squared (RMS) errors were 0.011 and 0.0039, in spring and fall respectively. Phenologically, a fall image is more appropriate to classify wetland land-cover than spring's. The classification result using 4 endmember fractions of a fall image reached 85.2 and 74.2 percent of the producer's and user's accuracy respectively. This study shows that this routine will be an useful tool for identifying and monitoring the status of wetlands in Paldang Reservoir.

An Evaluation of the Use of the Texture in Land Cover Classification Accuracy from SPOT HRV Image of Pusan Metropolitan Area (SPOT HRV 영상을 이용한 부산 지역 토지피복분류에 있어서의 질감의 기여에 관한 평가)

  • Jung, In-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.2 no.1
    • /
    • pp.32-44
    • /
    • 1999
  • Texture features can be incorporated in classification procedure to resolve class confusions. However, there have been few application-oriented studies made to evaluate the relative powers of texture analysis methods in a particular environment. This study evaluates the increases in the land-cover classification accuracy of the SPOT HRV multispectral data of Pusan Metropolitan area from texture processing. Twenty-four texture measures were derived from the SPOT HRV band 3 image. Each of these features were used in combination with the three spectral images in the classification of 10 land-cover classes. Supervised training and a Gaussian maximum likelihood classifier were used in the classification. It was found that while entropy produces the best empirical results in terms of the overall classification, other texture features can also largely improve the classification accuracies obtained by the use of the spectral images only. With the inclusion of texture, the classification for each category improves. Specially, urban built-up areas had much increase in accuracy. The results indicate that texture size 5 by 5 and 7 by 7 may be suitable at land cover classification of Pusan Metropolitan area.

  • PDF

A Study on Categorizing Ecosystem Groups for Climate Change Risk Assessment - Focused on Applicability of Land Cover Classification - (기후변화 리스크 평가를 위한 생태계 유형분류 방안 검토 - 국내 토지피복분류 적용성을 중심으로 -)

  • Yeo, Inae;Bae, Haejin;Hong, Seungbum
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.385-403
    • /
    • 2017
  • This study showed the national ecosystem classification for the spatial standards of ecosystems-based approaches to the risk assessments and adaptation plan. The characteristics of climate change risk assessment, implement national adaptation plans, and ecosystem/habitat classification status was evaluated. Focusing on the land cover classification widely utilized as spatial data for the assessments of biodiversity and ecosystem services in the UK and other countries in Europe, the applicability of the national land cover classification for climate change risk assessments was reviewed. Considering the ecosystem classification for climate change risk assessment and establishing adaptation measures, it is difficult to apply rough classification method to the land cover system because of lack of information on habitat trend by categorization. The results indicated that forest ecosystems and agro-ecosystem occupied 62.3% and 25.0% of land cover, respectively, of the entire country. Although the area is small compared with the land area, wetland ecosystem (2.9%), marine ecosystem (0.4%), coastal ecosystem (0.6%), and urban ecosystem (6.1%) can be included in the risk assessments. Therefore, it is necessary to subdivide below the medium classification for the forest and agricultural land, as well as Inland wetland, which has a higher proportion of habitat preference of taxa than land area, marine/coastal habitat, and transition areas such as urban and natural ecosystem.