• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.024 seconds

Spectral Mixture Analysis Using Hyperspectral Image for Hydrological Land Cover Classification in Urban Area (도시지역의 수문학적 토지피복 분류를 위한 초분광영상의 분광혼합분석)

  • Shin, Jung-Il;Kim, Sun-Hwa;Yoon, Jung-Suk;Kim, Tae-Geun;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.6
    • /
    • pp.565-574
    • /
    • 2006
  • Satellite images have been used to obtain land cover information that is one of important factors for hydrological analysis over a large area. In urban area, more detailed land cover data are often required for hydrological analysis because of the relatively complex land cover types. The number of land cover classes that can be classified with traditional multispectral data is usually less than the ones required by most hydrological uses. In this study, we present the capabilities of hyperspectral data (Hyperion) for the classification of hydrological land cover types in urban area. To obtain 17 classes of urban land cover defined by the USDA SCS, spectral mixture analysis was applied using eight endmembers representing both impervious and pervious surfaces. Fractional values from the spectral mixture analysis were then reclassified into 17 cover types according to the ratio of impervious and pervious materials. The classification accuracy was then assessed by aerial photo interpretation over 10 sample plots.

A Comparison of the Land Cover Data Sets over Asian Region: USGS, IGBP, and UMd (아시아 지역 지면피복자료 비교 연구: USGS, IGBP, 그리고 UMd)

  • Kang, Jeon-Ho;Suh, Myoung-Seok;Kwak, Chong-Heum
    • Atmosphere
    • /
    • v.17 no.2
    • /
    • pp.159-169
    • /
    • 2007
  • A comparison of the three land cover data sets (United States Geological Survey: USGS, International Geosphere Biosphere Programme: IGBP, and University of Maryland: UMd), derived from 1992-1993 Advanced Very High Resolution Radiometer(AVHRR) data sets, was performed over the Asian continent. Preprocesses such as the unification of map projection and land cover definition, were applied for the comparison of the three different land cover data sets. Overall, the agreement among the three land cover data sets was relatively high for the land covers which have a distinct phenology, such as urban, open shrubland, mixed forest, and bare ground (>45%). The ratios of triple agreement (TA), couple agreement (CA) and total disagreement (TD) among the three land cover data sets are 30.99%, 57.89% and 8.91%, respectively. The agreement ratio between USGS and IGBP is much greater (about 80%) than that (about 32%) between USGS and UMd (or IGBP and UMd). The main reasons for the relatively low agreement among the three land cover data sets are differences in 1) the number of land cover categories, 2) the basic input data sets used for the classification, 3) classification (or clustering) methodologies, and 4) level of preprocessing. The number of categories for the USGS, IGBP and UMd are 24, 17 and 14, respectively. USGS and IGBP used only the 12 monthly normalized difference vegetation index (NDVI), whereas UMd used the 12 monthly NDVI and other 29 auxiliary data derived from AVHRR 5 channels. USGS and IGBP used unsupervised clustering method, whereas UMd used the supervised technique, decision tree using the ground truth data derived from the high resolution Landsat data. The insufficient preprocessing in USGS and IGBP compared to the UMd resulted in the spatial discontinuity and misclassification.

KOMPSAT-3A Urban Classification Using Machine Learning Algorithm - Focusing on Yang-jae in Seoul - (기계학습 기법에 따른 KOMPSAT-3A 시가화 영상 분류 - 서울시 양재 지역을 중심으로 -)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_2
    • /
    • pp.1567-1577
    • /
    • 2020
  • Urban land cover classification is role in urban planning and management. So, it's important to improve classification accuracy on urban location. In this paper, machine learning model, Support Vector Machine (SVM) and Artificial Neural Network (ANN) are proposed for urban land cover classification based on high resolution satellite imagery (KOMPSAT-3A). Satellite image was trained based on 25 m rectangle grid to create training data, and training models used for classifying test area. During the validation process, we presented confusion matrix for each result with 250 Ground Truth Points (GTP). Of the four SVM kernels and the two activation functions ANN, the SVM Polynomial kernel model had the highest accuracy of 86%. In the process of comparing the SVM and ANN using GTP, the SVM model was more effective than the ANN model for KOMPSAT-3A classification. Among the four classes (building, road, vegetation, and bare-soil), building class showed the lowest classification accuracy due to the shadow caused by the high rise building.

Remote Sensing Image Classification for Land Cover Mapping in Developing Countries: A Novel Deep Learning Approach

  • Lynda, Nzurumike Obianuju;Nnanna, Nwojo Agwu;Boukar, Moussa Mahamat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.2
    • /
    • pp.214-222
    • /
    • 2022
  • Convolutional Neural networks (CNNs) are a category of deep learning networks that have proven very effective in computer vision tasks such as image classification. Notwithstanding, not much has been seen in its use for remote sensing image classification in developing countries. This is majorly due to the scarcity of training data. Recently, transfer learning technique has successfully been used to develop state-of-the art models for remote sensing (RS) image classification tasks using training and testing data from well-known RS data repositories. However, the ability of such model to classify RS test data from a different dataset has not been sufficiently investigated. In this paper, we propose a deep CNN model that can classify RS test data from a dataset different from the training dataset. To achieve our objective, we first, re-trained a ResNet-50 model using EuroSAT, a large-scale RS dataset to develop a base model then we integrated Augmentation and Ensemble learning to improve its generalization ability. We further experimented on the ability of this model to classify a novel dataset (Nig_Images). The final classification results shows that our model achieves a 96% and 80% accuracy on EuroSAT and Nig_Images test data respectively. Adequate knowledge and usage of this framework is expected to encourage research and the usage of deep CNNs for land cover mapping in cases of lack of training data as obtainable in developing countries.

Development of a Classification Method for Forest Vegetation on the Stand Level, Using KOMPSAT-3A Imagery and Land Coverage Map (KOMPSAT-3A 위성영상과 토지피복도를 활용한 산림식생의 임상 분류법 개발)

  • Song, Ji-Yong;Jeong, Jong-Chul;Lee, Peter Sang-Hoon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.6
    • /
    • pp.686-697
    • /
    • 2018
  • Due to the advance in remote sensing technology, it has become easier to more frequently obtain high resolution imagery to detect delicate changes in an extensive area, particularly including forest which is not readily sub-classified. Time-series analysis on high resolution images requires to collect extensive amount of ground truth data. In this study, the potential of land coverage mapas ground truth data was tested in classifying high-resolution imagery. The study site was Wonju-si at Gangwon-do, South Korea, having a mix of urban and natural areas. KOMPSAT-3A imagery taken on March 2015 and land coverage map published in 2017 were used as source data. Two pixel-based classification algorithms, Support Vector Machine (SVM) and Random Forest (RF), were selected for the analysis. Forest only classification was compared with that of the whole study area except wetland. Confusion matrixes from the classification presented that overall accuracies for both the targets were higher in RF algorithm than in SVM. While the overall accuracy in the forest only analysis by RF algorithm was higher by 18.3% than SVM, in the case of the whole region analysis, the difference was relatively smaller by 5.5%. For the SVM algorithm, adding the Majority analysis process indicated a marginal improvement of about 1% than the normal SVM analysis. It was found that the RF algorithm was more effective to identify the broad-leaved forest within the forest, but for the other classes the SVM algorithm was more effective. As the two pixel-based classification algorithms were tested here, it is expected that future classification will improve the overall accuracy and the reliability by introducing a time-series analysis and an object-based algorithm. It is considered that this approach will contribute to improving a large-scale land planning by providing an effective land classification method on higher spatial and temporal scales.

Effect Analysis of Worldview-3 SWIR Bands for Wetland Classification in Suncheon Bay, South Korea

  • Han, Youkyung;Jung, Sejung;Park, Honglyun;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.5
    • /
    • pp.371-379
    • /
    • 2018
  • Unlike general VHR (Very-High-Resolution) satellite sensors that are mainly for panchromatic and MS (Multispectral) imaging, Worldview-3 sensor additionally provides eight SWIR (Short Wavelength Infrared) bands in wavelength range from 1198 nm to 2365 nm. This study investigates the effect of informative Worldview-3 SWIR bands for wetland classification performance. Worldview-3 imagery acquired over Sunchon Bay, which is a coastal wetland located in South Korea, is used to implement the classification. Land-cover classes for the scene are determined by referring to national land-cover maps, which are provided by the Ministry of Environment, overlapped with the scene. After that, training data for each determined class are collected. In order to analyze the effect of SWIR bands, classifications with and without SWIR bands are carried out and the results are then compared. In this regard, a SVM (Support Vector Machine) is utilized as their classifier. As a result of the accuracy assessments performed by test data that are independently extracted from training data, it was confirmed that classification performance was improved when the SWIR bands are included as input features for SVM-based classification.

Support Vector Machine Classification Using Training Sets of Small Mixed Pixels: An Appropriateness Assessment of IKONOS Imagery

  • Yu, Byeong-Hyeok;Chi, Kwang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.5
    • /
    • pp.507-515
    • /
    • 2008
  • Many studies have generally used a large number of pure pixels as an approach to training set design. The training set are used, however, varies between classifiers. In the recent research, it was reported that small mixed pixels between classes are actually more useful than larger pure pixels of each class in Support Vector Machine (SVM) classification. We evaluated a usability of small mixed pixels as a training set for the classification of high-resolution satellite imagery. We presented an advanced approach to obtain a mixed pixel readily, and evaluated the appropriateness with the land cover classification from IKONOS satellite imagery. The results showed that the accuracy of the classification based on small mixed pixels is nearly identical to the accuracy of the classification based on large pure pixels. However, it also showed a limitation that small mixed pixels used may provide insufficient information to separate the classes. Small mixed pixels of the class border region provide cost-effective training sets, but its use with other pixels must be considered in use of high-resolution satellite imagery or relatively complex land cover situations.

Ensemble Modulation Pattern based Paddy Crop Assist for Atmospheric Data

  • Sampath Kumar, S.;Manjunatha Reddy, B.N.;Nataraju, M.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.403-413
    • /
    • 2022
  • Classification and analysis are improved factors for the realtime automation system. In the field of agriculture, the cultivation of different paddy crop depends on the atmosphere and the soil nature. We need to analyze the moisture level in the area to predict the type of paddy that can be cultivated. For this process, Ensemble Modulation Pattern system and Block Probability Neural Network based classification models are used to analyze the moisture and temperature of land area. The dataset consists of the collections of moisture and temperature at various data samples for a land. The Ensemble Modulation Pattern based feature analysis method, the extract of the moisture and temperature in various day patterns are analyzed and framed as the pattern for given dataset. Then from that, an improved neural network architecture based on the block probability analysis are used to classify the data pattern to predict the class of paddy crop according to the features of dataset. From that classification result, the measurement of data represents the type of paddy according to the weather condition and other features. This type of classification model assists where to plant the crop and also prevents the damage to crop due to the excess of water or excess of temperature. The result analysis presents the comparison result of proposed work with the other state-of-art methods of data classification.

A Comparative Study on Borehole Seismic Test Methods for Site Classification

  • Jung, Jong-Suk;Sim, Youngjong;Park, Jong-Bae;Park, Yong-Boo
    • Land and Housing Review
    • /
    • v.3 no.4
    • /
    • pp.389-397
    • /
    • 2012
  • In this study, crosshole seismic test, donwhole seismic test, SPT uphole test, and suspension PS logging (SPS logging) were conducted and the shear wave velocities of these tests were compared. The test demonstrated the following result: Downhole tests showed similar results compared to those of crosshole tests, which is known to be relatively accurate. SPS logging showed reliable results in the case of no casing, i.e. in the rock mass, while, in the case of soil ground, its values were lower or higher than those of other tests. SPT-uphole tests showed similar results in the soil ground and upper area of rock mass compared to other methods. However, reliable results could not be obtained from these tests because SPT sampler could not penetrate into the rock mass for the tests.

Landuse classifications from Thematic Mapper Images Using a Maximum Likelihood Method (위성영상을 이용한 토지이용분류에 관한 연구)

  • 박희성;박승우
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.366-369
    • /
    • 1998
  • To get the knowledge of land uses for watersheds, Thematic Mapper image from Landsat 5 satellite was used. The image was classified into land covers/uses by maximum likelihood classification technique. Land uses from the satellite image in this study was compared with those from the topographical map in previous. It was found that Land uses from the satellite image had a good reflection of real situations and more advantage in the reduction of time and cost.

  • PDF