• Title/Summary/Keyword: land classification

Search Result 924, Processing Time 0.026 seconds

Land Cover Classification of Satellite Image using SSResUnet Model (SSResUnet 모델을 이용한 위성 영상 토지피복분류)

  • Joohyung Kang;Minsung Kim;Seongjin Kim;Sooyeong Kwak
    • Journal of IKEEE
    • /
    • v.27 no.4
    • /
    • pp.456-463
    • /
    • 2023
  • In this paper, we introduce the SSResUNet network model, which integrates the SPADE structure with the U-Net network model for accurate land cover classification using high-resolution satellite imagery without requiring user intervention. The proposed network possesses the advantage of preserving the spatial characteristics inherent in satellite imagery, rendering it a robust classification model even in intricate environments. Experimental results, obtained through training on KOMPSAT-3A satellite images, exhibit superior performance compared to conventional U-Net and U-Net++ models, showcasing an average Intersection over Union (IoU) of 76.10 and a Dice coefficient of 86.22.

Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method - Focusing on the DMZ Region in Gangwon-Do - (원격탐사와 공간통계 기법을 이용한 토지피복 분류 및 패턴 분석 - 강원도 DMZ일원을 대상으로 -)

  • NA, Hyun-Sup;PARK, Jeong-Mook;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.100-118
    • /
    • 2015
  • This study established a land-cover classification method on objects using satellite images, and figured out distributional patterns of land cover according to categories through spatial statistics techniques. Object-based classification generated each land cover classification map by spectral information, texture information, and the combination of the two. Through assessment of accuracy, we selected optimum land cover classification map. Also, to figure out spatial distribution pattern of land cover according to categories, we analyzed hot spots and quantified them. Optimal weight for an object-based classification has been selected as the Scale 52, Shape 0.4, Color 0.6, Compactness 0.5, Smoothness 0.5. In case of using the combination of spectral information and texture information, the land cover classification map showed the best overall classification accuracy. Particularly in case of dry fields, protected cultivation, and bare lands, the accuracy has increased about 12 percent more than when we used only spectral information. Forest, paddy fields, transportation facilities, grasslands, dry fields, bare lands, buildings, water and protected cultivation in order of the higher area ratio of DMZ according to categories. Particularly, dry field sand transportation facilities in Yanggu occurred mainly in north areas of the civilian control line. dry fields in Cheorwon, forest and transportation facilities in Inje fulfilled actively in south areas of the civilian control line. In case of distributional patterns according to categories, hot spot of paddy fields, dry fields and protected cultivation, which is related to agriculture, was distributed intensively in plains of Yanggu and in basin areas of Cheorwon. Hot spot areas of bare lands, waters, buildings and roads have similar distribution patterns with hot spot areas related to agriculture, while hot spot areas of bare lands, water, buildings and roads have different distributional patterns with hot spot areas of forest and grasslands.

Comparison of Landcover Map Accuracy Using High Resolution Satellite Imagery (고해상도 위성영상의 토지피복분류와 정확도 비교 연구)

  • Oh, Che-Young;Park, So-Young;Kim, Hyung-Seok;Lee, Yanng-Won;Choi, Chul-Uong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.89-100
    • /
    • 2010
  • The aim of this study is to produce land cover maps using satellite imagery with various degrees of high resolution and then compare the accuracy of the image types and categories. For the land cover map produced on a small-scale classification the estuary area around the Nakdong river, including an urban area, farming land and waters, was selected. The images were classified by analyzing the aerial photos taken from KOMPSAT2, Quickbird and IKONOS satellites, which all have a resolution of over 1m to the naked eye. Once all of the land cover maps with different images and land cover categories had been produced they were compared to each other. Results show that image accuracy from the aerial photos and Quickbird was relatively higher than with KOMPSAT2 and IKONOS. The agreement ratio for the large-scale classification across the classification methods ranged between 0.934 and 0.956 for most cases. The Kappa value ranged between 0.905 and 0.937; the agreement ratio for the middle-scale classification was 0.888~0.913 and the Kappa value was 0.872~0.901. The agreement ratio for the small-scale classification was 0.833~0.901 and the Kappa value was 0.813~0.888. In addition, in terms of the degree of confusion occurrence across the images, there was confusion on the urbanized arid areas and empty land in the large-scale classification. For the middle-scale classification, the confusion mainly occurred on the rice paddies, fields, house cultivating area and artificial grassland. For the small-scale classification, confusion mainly occurred on natural green fields, cultivating land with facilities, tideland and the surface of the sea. The findings of this study indicate that the classification of the high resolution images with the naked eye showed an agreement ratio of over 80%, which means that it can be used in practice. The findings also suggest that the use of higher resolution images can lead to increased accuracy in classification, indicating that the time when the images are taken is important in producing land cover maps.

The Comparison of Water Quality of Daecheong-Dam basin According to the Data Sources of Land Cover Map (토지피복도 자료원에 따른 대청댐유역 수질특성 비교)

  • Lee, Geun Sang;Park, Jin Hyeog;Choi, Yun Woong
    • Spatial Information Research
    • /
    • v.20 no.5
    • /
    • pp.25-35
    • /
    • 2012
  • This study compared the influence of water quality according to the data sources of spatial information. Firstly, land cover map was constructed through image classification of Daecheong-dam basin and the accuracy of image classification from satellite image showed high as 88.76% in comparison with the large-scaled land cover map in Ministry of Environment, to calculate Event Mean Concentration (EMC) by land cover that impact on the evaluation of nonpoint source pollutant loads. Also curve number and direct runoff were calculated by spatial overlay with soil map and land cover map from image classification. And Seokcheon and Daecheong-Dam basin showed high in the analysis of curve number and direct runoff. Samgacheon-Joint and Sokcheon-Downstream basin showed high in the nonpoint source pollutant loads of BOD from direct runoff and EMC. And Samgacheon-Joint and Bonghwangcheon- Downstream basin showed high in the nonpoint source pollutant loads of TN and TP. Nonpoint source pollutant loads from image classification were compared with those by the land cover map from Ministry of Environment to present the effectivity of nonpoint source pollutant loads from satellite image. And Daecheong-Dam Upstream basin showed high as 10.64%, 11.70% and 20.00% respectively in the errors of nonpoint source pollutant loads of BOD, TN, and TP. Therefore, it is desirable that spatial information including with paddy and dry field is applied to the evaluation of nonpoint source pollutant loads in order to simulate water quality of basin effectively.

Estimation of Classification Accuracy of JERS-1 Satellite Imagery according to the Acquisition Method and Size of Training Reference Data (훈련지역의 취득방법 및 규모에 따른 JERS-1위성영상의 토지피복분류 정확도 평가)

  • Ha, Sung-Ryong;Kyoung, Chon-Ku;Park, Sang-Young;Park, Dae-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.5 no.1
    • /
    • pp.27-37
    • /
    • 2002
  • The classification accuracy of land cover has been considered as one of the major issues to estimate pollution loads generated from diffuse landuse patterns in a watershed. This research aimed to assess the effects of the acquisition methods and sampling size of training reference data on the classification accuracy of land cover using an imagery acquired by optical sensor(OPS) on JERS-1. Two kinds of data acquisition methods were considered to prepare training data. The first was to assign a certain land cover type to a specific pixel based on the researchers subjective discriminating capacity about current land use and the second was attributed to an aerial photograph incorporated with digital maps with GIS. Three different sizes of samples, 0.3%, 0.5%, and 1.0% of all pixels, were applied to examine the consistency of the classified land cover with the training data of corresponding pixels. Maximum likelihood scheme was applied to classify the land use patterns of JERS-1 imagery. Classification run applying an aerial photograph achieved 18 % higher consistency with the training data than the run applying the researchers subjective discriminating capacity. Regarding the sample size, it was proposed that the size of training area should be selected at least over 1% of all of the pixels in the study area in order to obtain the accuracy with 95% for JERS-1 satellite imagery on a typical small-to-medium-size urbanized area.

  • PDF

Automatic selection method of ROI(region of interest) using land cover spatial data (토지피복 공간정보를 활용한 자동 훈련지역 선택 기법)

  • Cho, Ki-Hwan;Jeong, Jong-Chul
    • Journal of Cadastre & Land InformatiX
    • /
    • v.48 no.2
    • /
    • pp.171-183
    • /
    • 2018
  • Despite the rapid expansion of satellite images supply, the application of imagery is often restricted due to unautomated image processing. This paper presents the automated process for the selection of training areas which are essential to conducting supervised image classification. The training areas were selected based on the prior and cover information. After the selection, the training data were used to classify land cover in an urban area with the latest image and the classification accuracy was valuated. The automatic selection of training area was processed with following steps, 1) to redraw inner areas of prior land cover polygon with negative buffer (-15m) 2) to select the polygons with proper size of area ($2,000{\sim}200,000m^2$) 3) to calculate the mean and standard deviation of reflectance and NDVI of the polygons 4) to select the polygons having characteristic mean value of each land cover type with minimum standard deviation. The supervised image classification was conducted using the automatically selected training data with Sentinel-2 images in 2017. The accuracy of land cover classification was 86.9% ($\hat{K}=0.81$). The result shows that the process of automatic selection is effective in image processing and able to contribute to solving the bottleneck in the application of imagery.

The Application and Use of Land Quality Ratings In the Valuation of Agricultural Land: An Evaluation of the South Dakota Experience

  • Larry Jassen;Douglas Malo;Chung, Doug-Young
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.05a
    • /
    • pp.24-27
    • /
    • 2000
  • The development of land classification and soil productivity rating systems (SPR) are examined for their application to valuation of agricultural land in South Dakota, USA. The application of SPR data to land valuation work conducted by real estate appraisers, tax assessors, and economists are discussed along with an assessment of its benefits and limitations.

  • PDF

Study of Comparison of Classification Accuracy of Airborne Hyperspectral Image Land Cover Classification though Resolution Change (해상도변화에 따른 항공초분광영상 토지피복분류의 분류정확도 비교 연구)

  • Cho, Hyung Gab;Kim, Dong Wook;Shin, Jung Il
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.155-160
    • /
    • 2014
  • This paper deals with comparison of classification accuracy between three land cover classification results having difference in resolution and they were classified with eight classes including building, road, forest, etc. Airborne hyperspectral image used in this study was acquired at 1000m, 2000m, 3000m elevation and had 24 bands(0.5m spatial resolution), 48 bands(1.0m), 96 bands(1.5m). Assessment of classification accuracy showed that the classification using 48 bands hyperspectral image had outstanding result as compared with other images. For using hyperspectral image, it was verified that 1m spatial resolution image having 48 bands was appropriate to classify land cover and qualitative improvement is expected in thematic map creation using airborne hyperspectral image.

Spatio-temporal change detection of land-use and urbanization in rural areas using GIS and RS - Case studies of Yongin and Anseong regions - (GIS와 RS를 이용한 농촌지역 토지이용 및 도시화 변화현상의 시공간 탐색 - 용인 및 안성지역을 중심으로 -)

  • Gao, Yujie;Kim, Dae-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.1
    • /
    • pp.153-162
    • /
    • 2011
  • This study analyzed the spatio-temporal change detection of land-use and urbanization in Yongin and Anseong regions, Kyunggi Province, using three Landsat-5 TM images for 1990, 1996, and 2000. Remote sensing (RS) and geographic information system (GIS) techniques were used for image classification and result analysis. Six land-use types were classified using supervised maximum likelihood classification. In the two study areas, the land-use changed significantly, especially the decrease of arable land and forest and increase of built-up area. Spatially, the urban expansion of Yongin region showed a spreading trend mainly along the national road and expressways. But in Anseong region the expansion showed 'urban sprawl phenomenon' with irregular shape like starfish. Temporally, the urban expansion showed disparity - the growth rates of urbanized area rose from the period 1990-1996 to 1996-2000 in both study areas. The increased built-up areas were converted mainly from paddy, dry vegetation, and forest.

Sub-class Clustering of Land Cover over Asia considering 9-year NDVI and Climate Data

  • Lee, Ga-Lam;Han, Kyung-Soo;Kim, Do-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.289-301
    • /
    • 2011
  • In this paper an attempt has been made to classify Asia land cover considering climatic and vegetative characteristics. The sub-class clustering based on the 13 MODIS land cover classes (except water) over Asia was performed with the climate map and the NOVI derived from SPOT 5 VGT D10 data. The unsupervised classification for the sub-class clustering was performed in each land cover class, and total 74 clusters were determined over the study area. Via these clusters, the annual variations (from 1999 to 2007) of precipitation rate and temperature were analyzed as an example by a simple linear regression model. The various annual variations (negative or positive pattern) were represented for each cluster because of the various climate zones and NOVI annual cycles. Therefore, the detailed land cover map as the classification result by the sub-class clustering in this study can be useful information in modelling works for requiring the detailed climatic and vegetative information as a boundary condition.