• 제목/요약/키워드: land classification

Search Result 924, Processing Time 0.033 seconds

Analysis of Land-cover Types Using Multistage Hierarchical flustering Image Classification (다단계 계층군집 영상분류법을 이용한 토지 피복 분석)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.2
    • /
    • pp.135-147
    • /
    • 2003
  • This study used the multistage hierarchical clustering image classification to analyze the satellite images for the land-cover types of an area in the Korean peninsula. The multistage algorithm consists of two stages. The first stage performs region-growing segmentation by employing a hierarchical clustering procedure with the restriction that pixels in a cluster must be spatially contiguous, and finally the whole image space is segmented into sub-regions where adjacent regions have different physical properties. Without spatial constraints for merging, the second stage clusters the segments resulting from the previous stage. The image classification of hierarchical clustering, which merges step-by step two small groups into one large one based on the hierarchical structure of digital imagery, generates a hierarchical tree of the relation between the classified regions. The experimental results show that the hierarchical tree has the detailed information on the hierarchical structure of land-use and more detailed spectral information is required for the correct analysis of land-cover types.

UAV-based Land Cover Mapping Technique for Monitoring Coastal Sand Dunes

  • Choi, Seok Keun;Kim, Gu Hyeok;Choi, Jae Wan;Lee, Soung Ki;Choi, Do Yoen;Jung, Sung Heuk;Chun, Sook Jin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.35 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • In recent years, coastal dune erosion has accelerated as various structures have been developed around the coastal dunes. A land cover map should be developed to identify the characteristics of sand dunes and to monitor the condition of sand dunes. The Korean Ministry of Environment's land cover maps suffer from problems, such as limited classes, target areas, and durations. Thus, this study conducted experiments using RGB and multispectral images based on UAV (Unmanned Aerial Vehicle) over an approximately one-year cycle to create a land cover map of coastal dunes. RF (Random Forest) classifier was used for the analysis in accordance with the experimental region's characteristics. The pixel- and object-based classification results obtained by using RGB and multispectral cameras were evaluated, respectively. The study results showed that object-based classification using multispectral images had the highest accuracy. Our results suggest that constant monitoring of coastal dunes can be performed effectively.

Analysis of forest types and stand structures over Korean peninsula Using NOAA/AVHRR data

  • Lee, Seung-Ho;Kim, Cheol-Min;Oh, Dong-Ha
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.386-389
    • /
    • 1999
  • In this study, visible and near infrared channels of NOAA/AVHRR data were used to classify land use and vegetation types over Korean peninsula. Analyzing forest stand structures and prediction of forest productivity using satellite data were also reviewed. Land use and land cover classification was made by unsupervised clustering methods. After monthly Normalized Difference Vegetation Index (NDVI) composite images were derived from April to November 1998, the derived composite images were used as temporal feature vector's in this clustering analysis. Visually interpreted, the classification result was satisfactory in overall for it matched well with the general land cover patterns. But subclassification of forests into coniferous, deciduous, and mixed forests were much confused due to the effects of low ground resolution of AVHRR data and without defined classification scheme. To investigate into the forest stand structures, digital forest type maps were used as an ancillary data. Forest type maps, which were compiled and digitalized by Forestry Research Institute, were registered to AVHRR image coordinates. Two data sets were compared and percent forest cover over whole region was estimated by multiple regression analysis. Using this method, other forest stand structure characteristics within the primary data pixels are expected to be extracted and estimated.

  • PDF

Landcover classification by coherence analysis from multi-temporal SAR images (다중시기 SAR 영상자료 긴밀도 분석을 통한 토지피복 분류)

  • Yoon, Bo-Yeol;Kim, Youn-Soo
    • Aerospace Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.132-137
    • /
    • 2009
  • This study has regard to classification by using multi-temporal SAR data. Multi-temporal JERS-1 SAR images are used for extract the land cover information and possibility. So far, land cover information extracted by high resolution aerial photo, satellite images, and field survey. This study developed on multi-temporal land cover status monitoring and coherence information mapping can be processing by L band SAR image. From July, 1997 to October, 1998 JERS SAR images (9 scenes) coherence values are analyzed and then extracted land cover information factors, so on. This technique which forms the basis of what is called SAR Interferometry or InSAR for short has also been employed in spaceborne systems. In such systems the separation of the antennas, called the baseline is obtained by utilizing a single antenna in a repeat pass.

  • PDF

SEGMENTATION-BASED URBAN LAND COVER HAPPING FROM KOMPSAT EOC IMAGES

  • Florian P, Kressler;Kim, Youn-Soo;Klaus T, Steinnocher
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.588-595
    • /
    • 2003
  • High resolution panchromatic satellite images collected by sensors such as IRS-1C/D and KOMPSAT-1 have a spatial resolution of approximately 6 ${\times}$ 6 ㎡, making them very attractive for urban applications. However, the spectral information present in these images is very limited. In order to overcome this limitation, an object-oriented classification approach is used to identify basic land cover types in urban areas. Before an image can be classified it is segmented at different aggregation levels using a multiresolution segmentation approach. In the course of this segmentation various statistical as well as topological information is collected for each segment. Based on this information it is possible to classify image objects and to arrive at much better results than by looking only at single pixels. Using an image recorded by KOMPSAT-1 over the City of Vienna a land cover classification was carried out for two areas. One was used to set up the rules for the different land cover types. The second subset was classified based on these rules, only adjusting some of the functions governing the classification process.

  • PDF

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

Land Cover Classifier Using Coordinate Hash Encoder (좌표 해시 인코더를 활용한 토지피복 분류 모델)

  • Yongsun Yoon;Dongjae Kwon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_3
    • /
    • pp.1771-1777
    • /
    • 2023
  • With the advancements of deep learning, many semantic segmentation-based methods for land cover classification have been proposed. However, existing deep learning-based models only use image information and cannot guarantee spatiotemporal consistency. In this study, we propose a land cover classification model using geographical coordinates. First, the coordinate features are extracted through the Coordinate Hash Encoder, which is an extension of the Multi-resolution Hash Encoder, an implicit neural representation technique, to the longitude-latitude coordinate system. Next, we propose an architecture that combines the extracted coordinate features with different levels of U-net decoder. Experimental results show that the proposed method improves the mean intersection over union by about 32% and improves the spatiotemporal consistency.

Classification of Land Cover over the Korean Peninsula Using Polar Orbiting Meteorological Satellite Data (극궤도 기상위성 자료를 이용한 한반도의 지면피복 분류)

  • Suh, Myoung-Seok;Kwak, Chong-Heum;Kim, Hee-Soo;Kim, Maeng-Ki
    • Journal of the Korean earth science society
    • /
    • v.22 no.2
    • /
    • pp.138-146
    • /
    • 2001
  • The land cover over Korean peninsula was classified using a multi-temporal NOAA/AVHRR (Advanced Very High Resolution Radiometer) data. Four types of phenological data derived from the 10-day composited NDVI (Normalized Differences Vegetation Index), maximum and annual mean land surface temperature, and topographical data were used not only reducing the data volume but also increasing the accuracy of classification. Self organizing feature map (SOFM), a kind of neural network technique, was used for the clustering of satellite data. We used a decision tree for the classification of the clusters. When we compared the classification results with the time series of NDVI and some other available ground truth data, the urban, agricultural area, deciduous tree and evergreen tree were clearly classified.

  • PDF

HyperConv: spatio-spectral classication of hyperspectral images with deep convolutional neural networks (심층 컨볼루션 신경망을 사용한 초분광 영상의 공간 분광학적 분류 기법)

  • Ko, Seyoon;Jun, Goo;Won, Joong-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.859-872
    • /
    • 2016
  • Land cover classification is an important tool for preventing natural disasters, collecting environmental information, and monitoring natural resources. Hyperspectral imaging is widely used for this task thanks to sufficient spectral information. However, the curse of dimensionality, spatiotemporal variability, and lack of labeled data make it difficult to classify the land cover correctly. We propose a novel classification framework for land cover classification of hyperspectral data based on convolutional neural networks. The proposed framework naturally incorporates full spectral features with the information from neighboring pixels and has advantages over existing methods that require additional feature extraction or pre-processing steps. Empirical evaluation results show that the proposed framework provides good generalization power with classification accuracies better than (or comparable to) the most advanced existing classifiers.

The Compensation Cost Analysis of Parcels for Land Alternation according to Occupation Ratio to Road (도로 편입률에 따른 토지이동 대상필지 보상비 분석)

  • Lee, Geun Sang;Park, Jong Ahn;Cho, Mi Su;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.1
    • /
    • pp.13-22
    • /
    • 2014
  • Recently, many civil appeals have been occurred in land management work because of discord between cadastral records and actual land use pattern. it is important to select parcels for land alternation exactly using land information and to evaluate compensation cost according to scenarios for advancing this problem. This study operated GIS spatial overlay based on serial cadastral maps and actual-width of the road and analyzed the number and area of the parcels for land alternation by the land classification and ownership applying fuzzy membership function according to occupation ratio to road. Also compensation cost was calculated according to scenarios using individual public land price information of the parcels for land alternation and was arranged by district as Eup and Myeon according to land classification and ownership. This study can efficiently support the work of the parcels for land alternation complying with the financial condition of local government, by supplying compensation cost according to scenarios to the parcels of land alternation by district as Eup and Myeon.