• Title/Summary/Keyword: laminated structures

Search Result 489, Processing Time 0.025 seconds

Vibration analysis of a pre-stressed laminated composite curved beam

  • Ozturk, Hasan
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.635-659
    • /
    • 2015
  • In this study, natural frequency analysis of a large deflected cantilever laminated composite beam fixed at both ends, which forms the case of a pre-stressed curved beam, is investigated. The laminated beam is considered to have symmetric and asymmetric lay-ups and the effective flexural modulus of the beam is used in the analysis. In order to obtain the pre-stressed composite curved beam case, an external vertical concentrated load is applied at the free end of a cantilever laminated composite beam and then the loading point of the deflected beam is fixed. The non-linear deflection curve of the flexible beam undergoing large deflection is obtained by the Reversion Method. The curved laminated composite beam is modeled by using the Finite Element Method with a straight-beam element approach. The effects of orientation angle and vertical load on the natural frequency parameter for the first four modes are examined and the results obtained are given in graphics. It has been found that the effect of the load parameter, which forms the curved laminated beam, on the natural frequency parameter, almost disappears after a certain value of the load parameter. This certain value differs for each laminated curved beam and each vibration mode.

Optimal design of laminated composite plates to maximise fundamental frequency using MFD method

  • Topal, Umut;Uzman, Umit
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.479-491
    • /
    • 2006
  • This paper deals with optimal fibre orientations of symmetrically laminated fibre reinforced composite structures for maximising the fundamental frequency of small-amplitude. A set of fiber orientation angles in the layers are considered as design variable. The Modified Feasible Direction method is used in order to obtain the optimal designs. The effects of number of layers, boundary conditions, laminate thicknesses, aspect ratios and in-plane loads on the optimal designs are studied.

Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations

  • Akgoz, Bekir;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.11 no.5
    • /
    • pp.403-421
    • /
    • 2011
  • In the present manuscript, geometrically nonlinear free vibration analysis of thin laminated plates resting on non-linear elastic foundations is investigated. Winkler-Pasternak type foundation model is used. Governing equations of motions are obtained using the von Karman type nonlinear theory. The method of discrete singular convolution is used to obtain the discretised equations of motion of plates. The effects of plate geometry, boundary conditions, material properties and foundation parameters on nonlinear vibration behavior of plates are presented.

Vibration of angle-ply laminated composite circular and annular plates

  • Mercan, Kadir;Ebrahimi, Farzad;Civalek, Omer
    • Steel and Composite Structures
    • /
    • v.34 no.1
    • /
    • pp.141-154
    • /
    • 2020
  • In the present paper, free vibration analysis of angle-ply laminated composite annular and circular plates is performed by numerical methods. First-order shear deformation plate theory is used for kinematic relations. The related governing equations of motion are discretized via differential quadrature and discrete singular convolution methods. Frequency values are obtained for different lamina scheme, thickness-to-radius ratio, and mode numbers. The advantages and accuracy of these two methods are also tested in detail.

Shape Optimization of Laminated Composite Shell for Various Layup Configurations (적층배열에 따른 복합재료 쉘의 형상최적화)

  • 김현철;노희열;조맹효
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.317-324
    • /
    • 2004
  • Shape design optimization of shell structure is implemented on a basis of integrated framework of geometric modeling and finite element analysis which is constructed on the geometrically exact shell theory. This shell theory enables more accurate and robust analysis for complicated shell structures, and it fits for the nature of B-spline function which Is popular modeling scheme in CAD field. Shape of laminated composite shells is optimized through genetic algorithm and sequential linear programming, because there ire numerous optima for various configurations, constraints, and searching paths. Sequential adaptation of global and local optimization makes the process more efficient. Two different optimized results of laminated composite shell structures to minimize strain energy are shown for different layup sequence.

  • PDF

Parametric Study of Composite Laminated Conical Shells (복합적층 원뿔형 쉘의 파라미터 연구)

  • Son, Byung-Jik;Jung, Dae-Suck
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.5
    • /
    • pp.41-49
    • /
    • 2007
  • In general, the curved structures have the engineering efficiency as well as a fine view compared with straight member. Also, composite materials are composed of two or more different materials to produce desirable properties for structural strength as compared to single ones. Shell structures with composite materials have many advantages in strength and weight reduction. Therefore, composite laminated conical shells are analyzed in this study. To solve differential equations of conical shells, this paper used finite difference method. Various parametric study according to the change of radius ratio, vertex angle and subtended angle are examined. The change of radius ratio, vertex angle and subtended angle mean the change from conical shells to cylindrical shells, conical shells to circular plates and open shells closed shells, respectively.

Geometrically nonlinear analysis of FG doubly-curved and hyperbolical shells via laminated by new element

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Arabi, E.
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.389-401
    • /
    • 2018
  • An isoparametric six-node triangular element is utilized for geometrically nonlinear analysis of functionally graded (FG) shells. To overcome the shear and membrane locking, the element is improved by using strain interpolation functions. The Total Lagrangian formulation is employed to include the large displacements and rotations. Finding the nonlinear behavior of FG shells via laminated modeling is also the goal. A power function is employed to formulate the variation of elastic modulus through the thickness of shells. The results are presented in two ways, including the general FGM formulation and the laminated modeling. The equilibrium path is obtained by using the Generalized Displacement Control Method. Some popular benchmarks, including hyperbolical shell structures are solved to declare the correctness and accuracy of proposed formulations.

Exact solution for transverse bending analysis of embedded laminated Mindlin plate

  • Heydari, Mohammad Mehdi;Kolahchi, Reza;Heydari, Morteza;Abbasi, Ali
    • Structural Engineering and Mechanics
    • /
    • v.49 no.5
    • /
    • pp.661-672
    • /
    • 2014
  • Laminated Rectangular plates embedded in elastic foundations are used in many mechanical structures. This study presents an analytical approach for transverse bending analysis of an embedded symmetric laminated rectangular plate using Mindlin plate theory. The surrounding elastic medium is simulated using Pasternak foundation. Adopting the Mindlin plate theory, the governing equations are derived based on strain-displacement relation, energy method and Hamilton's principle. The exact analysis is performed for this case when all four ends are simply supported. The effects of the plate length, elastic medium and applied force on the plate transverse bending are shown. Results indicate that the maximum deflection of the laminated plate decreases when considering an elastic medium. In addition, the deflection of the laminated plate increases with increasing the plate width and length.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Application of a new extended layerwise approach to thermal buckling load optimization of laminated composite plates

  • Topal, Umut
    • Steel and Composite Structures
    • /
    • v.14 no.3
    • /
    • pp.283-293
    • /
    • 2013
  • This paper deals with the applicability of a new extended layerwise optimization method for thermal buckling load optimization of laminated composite plates. The design objective is the maximization of the critical thermal buckling of the laminated plates. The fibre orientations in the layers are considered as design variables. The first order shear deformation theory (FSDT) is used for the finite element solution of the laminates. Finally, the numerical analysis is carried out to show the applicability of extended layerwise optimization algorithm of laminated plates for different parameters such as plate aspect ratios and boundary conditions.