• 제목/요약/키워드: laminated structures

검색결과 487건 처리시간 0.035초

복합적층 쉘구조의 기하학적 비선형해석 (Geometrically Nonlinear Analysis of Laminated Composite Shell Structures)

  • 유승운
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.119-125
    • /
    • 1997
  • The finite element analysis of plate and shell structures has been one of the major research interests for many years because of the technological importance of such structures. Quite often these structures are constructed by laminated composites. This is due to the high specific stiffness and strength of composite structures. The main objective of this paper is to extend the use of an improved degenerated shell element to the large displacement analysis of plates and shells with laminated composites. The total Lagrangian approach has been chosen for the definition of the deformation and the solution to the nonlinear equilibrium equations is obtained by the Newton-Raphson method.

  • PDF

비등방성 적층 캔틸레버 박판 및 후판의 해석연구 (Study on the Analysis of Anisotropic Laminated Cantilever Thin Plates and Anisotropic Laminated Cantilever Thick Plates)

  • 박원태
    • 복합신소재구조학회 논문집
    • /
    • 제1권4호
    • /
    • pp.1-5
    • /
    • 2010
  • In this study, it is presented analysis results of bending problems in the anisotropic cantilever thick plates and the anisotropic laminated cantilever thin plates bending problems. Finite element method in this analysis was used. Both Kirchoff's assumptions and Mindlin assumptions are used as the basic governing equations of bending problems in the anisotropic laminated plates. The analysis results are compared between the anisotropic laminated cantilever thick plates and the anisotropic laminated cantilever thin plates for the variations of thickness-width ratios.

  • PDF

A modified particle swarm approach for multi-objective optimization of laminated composite structures

  • Sepehri, A.;Daneshmand, F.;Jafarpur, K.
    • Structural Engineering and Mechanics
    • /
    • 제42권3호
    • /
    • pp.335-352
    • /
    • 2012
  • Particle Swarm Optimization (PSO) is a stochastic population based optimization algorithm which has attracted attentions of many researchers. This method has great potentials to be applied to many optimization problems. Despite its robustness the standard version of PSO has some drawbacks that may reduce its performance in optimization of complex structures such as laminated composites. In this paper by suggesting a new variation scheme for acceleration parameters and inertial weight factors of PSO a novel optimization algorithm is developed to enhance the basic version's performance in optimization of laminated composite structures. To verify the performance of the new proposed method, it is applied in two multi-objective design optimization problems of laminated cylindrical. The numerical results from the proposed method are compared with those from two other conventional versions of PSO-based algorithms. The convergancy of the new algorithms is also compared with the other two versions. The results reveal that the new modifications inthe basic forms of particle swarm optimization method can increase its convergence speed and evade it from local optima traps. It is shown that the parameter variation scheme as presented in this paper is successful and can evenfind more preferable optimum results in design of laminated composite structures.

다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석 (Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces)

  • 지효선
    • 복합신소재구조학회 논문집
    • /
    • 제3권4호
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

A technique for optimally designing fibre-reinforced laminated structures for minimum weight with manufacturing uncertainties accounted for

  • Walker, M.
    • Steel and Composite Structures
    • /
    • 제7권3호
    • /
    • pp.253-262
    • /
    • 2007
  • A methodology to design symmetrically laminated fibre-reinforced structures under transverse loads for minimum weight, with manufacturing uncertainty in the ply angle, is described. The ply angle and the ply thickness are the design variables, and the Tsai-Wu failure criteria is the design constraint implemented. It is assumed that the probability of any tolerance value occurring within the tolerance band, compared with any other, is equal, and thus the approach is a worst-case scenario approach. The finite element method, based on Mindlin plate and shell theory, is implemented, and thus effects like bending-twisting coupling are accounted for. The Golden Section method is used as the search algorithm, but the methodology is flexible enough to allow any appropriate finite element formulation, search algorithm and failure criterion to be substituted. In order to demonstrate the procedure, laminated plates with varying aspect ratios and boundary conditions are optimally designed and compared.

불규칙 진동을 받는 복합 적층보의 응력 및 파괴해석 (Random Vibration Analysis of Composite Laminated Beams)

  • 전용선;강주원
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.29-36
    • /
    • 2002
  • The responses of composite laminated beams modeled with finite element and excited by stochastic loading are studied. The cantilevered laminated beam having a 5 ply configuration is considered. The beam is 1m long, 0.1m wide, and 0.02m thick, yielding a length to thickness ratio of L/h=50. The laminated beams was assumed to be made of Born Epoxy. The four nodes at the free end of the cantilever were loaded with identical zero-mean white noise excitations. Stress and failure analysis loaded with identical zero-mean white noise excitations is carried out. Along with the obtained results, comparison and discussion are presented for the cases of symmetric-ply, antisymmetric-ply, angle-ply, and cross-ply laminated beams.

  • PDF

Assessment of non-polynomial shear deformation theories for thermo-mechanical analysis of laminated composite plates

  • Joshan, Yadwinder S.;Grover, Neeraj;Singh, B.N.
    • Steel and Composite Structures
    • /
    • 제27권6호
    • /
    • pp.761-775
    • /
    • 2018
  • In the present work, the recently developed non-polynomial shear deformation theories are assessed for thermo-mechanical response characteristics of laminated composite plates. The applicability and accuracy of these theories for static, buckling and free vibration responses were ascertained in the recent past by several authors. However, the assessment of these theories for thermo-mechanical analysis of the laminated composite structures is still to be ascertained. The response characteristics are investigated in linear and non-linear thermal gradient and also in the presence and absence of mechanical transverse loads. The laminated composite plates are modelled using recently developed six shear deformation theories involving different shear strain functions. The principle of virtual work is used to develop the governing system of equations. The Navier type closed form solution is adopted to yield the exact solution of the developed equation for simply supported cross ply laminated plates. The thermo-mechanical response characteristics due to these six different theories are obtained and compared with the existing results.

Nonlinear vibration analysis of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Li, Xinwu
    • Steel and Composite Structures
    • /
    • 제21권2호
    • /
    • pp.395-409
    • /
    • 2016
  • Nonlinear vibration characteristics of composite laminated trapezoidal plates are studied. The geometric nonlinearity of the plate based on the von Karman's large deformation theory is considered, and the finite element method (FEM) is proposed for the present nonlinear modeling. Hamilton's principle is used to establish the equation of motion of every element, and through assembling entire elements of the trapezoidal plate, the equation of motion of the composite laminated trapezoidal plate is established. The nonlinear static property and nonlinear vibration frequency ratios of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results published in the open literatures. Moreover, the effects of the ply angle and the length-high ratio on the nonlinear vibration frequency ratios of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are analyzed for the different ply angles and harmonic excitation forces.

강화변형률 솔리드 요소를 사용한 사각형태 층간분리를 갖는 복합적층판의 탄성좌굴해석 (Elastic Buckling Analysis of Laminated Composite Plates with Embedded Square Delamination Using an Enhanced Assumed Strain Solid Element)

  • 박대용;장석윤
    • 복합신소재구조학회 논문집
    • /
    • 제1권2호
    • /
    • pp.1-13
    • /
    • 2010
  • 복합적층구조의 층간분리현상은 탄성좌굴하중을 감소시키며 설계값보다 낮은 수준에서 전체구조물의 파괴를 유발한다. 따라서 복합적층구조의 층간분리 현상은 매우 중요한 문제이며 많은 이론과 실험적인 연구가 진행되어왔다. 본 연구에서는 3차원 이론을 사용한 효과적인 유한요소법에 기초하여 임베디드된 사각형 층간분리 현상을 갖는 복합적층판의 탄성좌굴 거동을 분석하였다. 해석을 위해 개발된 3차원 유한요소는 EAS-SOLID8이라고 이름 붙여졌으며 강화된 대체 변형률 방법을 사용하였다. 임베디드된 사각형 층간분리를 갖는 복합적층판의 탄성좌굴거동 분석을 위해 경계조건, 폭-두께비 변화에 대하여 매개변수 해석을 수행하였다. 본 연구의 그래프와 좌굴모드는 임베디드된 사각형 층간분리를 갖는 복합적층판의 설계에 매우 유용한 자료가 될 것으로 사료된다.

  • PDF