• Title/Summary/Keyword: laminated composite structure

Search Result 191, Processing Time 0.02 seconds

Energy Absorption Characteristics of Composite Laminated Structural Member According to the Interface Number (복합적층 구조부재의 계면수 변화에 따른 에너지흡수특성)

  • Hwang, Woo-Chae;Lee, Kil-Sung;Cha, Cheon-Seok;Jung, Jong-An;Han, Gil-Young;Yang, In-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Ultimate goals in vehicle design can be summarized as environment-friendliness and safety. Along with these requirements, the importance of natural environment conservation has been focused lately. Therefore, reduced emission from vehicle and improved efficiency has become the top priority projects throughout the world. CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structure materials for vehicles, has a widely application in lightweight structural materials of air planes, ships and automobiles because of high strength and stiffness. This study is to investigate the energy absorption characteristics of CFRP hat-shaped section members under the axial impact collapse test. The CFRP hat-shaped section members which manufactured from unidirectional prepreg sheets were made of 8plies. The axial impact collapse tests were carried out for each section members. The collapse mode and energy absorption characteristics were analyzed for CFRP hat-shaped section member according to the interface numbers(2, 3, 4, 6 and 7).

Manufacture of 3D Textile Preform and Study on Mechanical Properties of Composites (3D Textile 프리폼 제조 및 복합재료 기계적 특성 연구)

  • Jo, Kwang-Hoon;Klapper, Vinzenz;Kim, Hyeon-Woo;Lee, Jeong-Woon;Han, Joong-Won;Byun, Joon-Hyung;Joe, Chee-Ryong
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.65-70
    • /
    • 2019
  • The aircraft composites wing parts are usually integrated with adhesive or fastener. These laminated composites have weak interlaminar strength, which can lead to delamination. In order to compensate the disadvantages of laminated composites, it is possible to improve the strength, durability, shock and fatigue resistance by reinforcing the fiber in the thickness direction. In addition, using a single structure near-net-shape saves the manufacturing time and the number of fasteners, thus can reduce the overall cost of the composite parts. In this study, compression test, tensile test and open-hole tensile test are carried out for three structural architecture of 3D (three-dimensional) textile preforms: orthogonal(ORT), layer-to-layer(LTL) and through-the-thickness(TTT) patterns. Among these, the orthogonal textile composite shows the highest Young's modulus and strength in tensile and compression. The notch sensitivity of the orthogonal textile composite was the smallest as compared with UD (unidirectional) and 2D (two-dimensional) fabric laminates.

Influence of Attached Mass/Masses on Natural Frequency of Vibration of Laminated Composite Plate for Bridge Deck (교량상판형(橋梁上板形) 적층복합판(積層復合板)의 진동수(振動數)에 대한 첨가질량(添加質量)의 영향(影響))

  • Sim, Do-Sik;Lee, Se-Jin;Kim, Kyung-Jin;Park, Je-Sun
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.123-129
    • /
    • 1996
  • A method of calculating the natural frequency corresponding to the first mode of vibration of beams and tower structures with irregular cross-sections and with arbitrary boundary conditions was developed and reported by D. H. Kim in 1974. In order to obtain the natural frequency by the presented method, the first step to take is to obtain the deflection influence surfaces. In design and analysis of any structure, the first step to be taken is to obtain this deflection influence surfaces. Any method can be used for this purpose. Then using this surfaces, deflections, slopes, moments, shears, and natural frequencies can be obtained by differentiating either the continuous function or discrete function defined at certain points. The merit of the presented method is that the natural frequency can be obtained by the deflection influence surfaces obtaining which is the first step in structural analysis.

  • PDF

Pd-based metallic membranes for hydrogen separation and production

  • Tosti, Silvano;Basile, Angelo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.25-28
    • /
    • 2003
  • Low cost composite metallic membranes for the hydrogen separation and production have been prepared by using thin Pd-Ag foils reinforced by metallic (stainless steel and nickel) structures. Especially, “supported membranes” have been obtained by a diffusion welding procedure in which Pd-Ag thin foils have been joined with perforated metals (nickel) and expanded metals (stainless steel): in these membranes the thin palladium foil assures both the high hydrogen permeability and the perm-selectivity while the metallic support provides the mechanical strength. A second studied method of producing "laminated membranes" consists of coating non-noble metal sheets with very thin palladium layers by diffusion welding and cold-rolling. Palladium thin coatings over these metals reduce the activation energy of the hydrogen adsorption process and make them permeable to the hydrogen. In this case, the dense non-noble metal has been used as a support structure of the thin Pd-Ag layers coated over its surfaces: a proper thickness of the metal assures the mechanical strength, the absence of defects (cracks, micro-holes) and the complete hydrogen selectivity of the membrane. membrane.

  • PDF

The Effects of Temperature Change on the Bending Strength of CF/PEEK Laminates after Impact (온도변화가 CF/PEEK 적층재의 충격 후 굽힘강도에 미치는 영향)

  • 양인영;정종안;나승우
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.34-39
    • /
    • 2003
  • In this paper, when CF/PEEK laminates for high efficiency space structure are subjected to FOD(Foreign Object Damage), the effects of temperature change on the impact damages(interlaminar separation and transverse crack) of CF/PEEK laminates and the relationship between residual lift and impact damages are experimentally investigated. Composite laminates used in this experiment are CF/PEEK orthotropic laminated plates, which have two-interlaces [$0^{\circ}_4/90^{\circ}_8/0^{\circ}_4$]. A steel ball launched by the air gun collides against CF/PEEK laminates to generate impact damages. And then CF/PEEK specimens with impact damages are observed by a scanning acoustic microscope under room and high temperatures. In this experimental results, various relations are experimentally observed including the delamination area vs. temperature change, the bending strength vs. impact energy and the residual bending strength vs. impact damage of CF/PEEK laminates.

Evaluation of thermal conductivity in REBCO coated conductor

  • Yong-Ju, Hong;Sehwan, In;Hyobong, Kim;Hankil, Yeom
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.4
    • /
    • pp.78-83
    • /
    • 2022
  • REBCO coated conductors are widely used for HTS power application, high magnetic field magnet application, and etc. A thermal stability of the REBCO conductor is essential for the operation of HTS-based device, and thermal conductivities of the conductor are relevant parameters for modeling cryogenic heat transfer. REBCO conductors consist of a REBCO layer, copper layers for electrical stabilization and a hastelloy substrate. At cryogenic temperature, thermal conductivity of copper and silver strongly depend on the purity of the material and the intensity of the magnetic field. In this study, thermal conductivities of the laminated composite structure of REBCO conductor are evaluated by using the thermal network model and the multidimensional heat conduction analysis. As a result, the thermal network model is applicable to REBCO conductors configured in series or parallel alone and multidimensional heat conduction analysis is necessary for complex cases of series and parallel configuration.

An Experimental Study on the Failure of a Novel Composite Sandwich Structure (새로운 형상의 복합재 샌드위치 체결부 구조의 파손거동 연구)

  • Kwak, Byeong-Su;Kim, Hong-Il;Dong, Seung-Jin;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.29 no.4
    • /
    • pp.209-215
    • /
    • 2016
  • The failure of composite sandwich structures with thickness and material variation was studied. The main body of the structure is sandwich plate made of the carbon composite face and Aluminum honeycomb core. It is connected with composite laminated flange without core through transition region of tapered sandwich panel with foam core. Tension and compression tests were conducted for the total of 6 panels, 3 for each. Test results showed that the panels under compression are vulnerable to the face failure along the material discontinuity line between two different cores. However the failure load of which panel does not show such failure can carry 16% more load and fails in honeycomb core and face debonding. For the tensile load, the extensive delamination failure was observed at the corner radius which connects the panel and the flange. The average failure load for compression is about 7 times the tensile failure load. Accordingly, these sandwich structures should be applied to the components that endure the compressive loadings.

Effects of Fiber Alignment Direction and Stacking Sequence of Laminates on Fracture Behavior of Biomimetic Composites under Pressure Loading (압력하중 하에서 섬유배열방향과 적층판의 적층순서에 따른 생체모방 복합재의 파괴 거동에 관한 연구)

  • Myungsoo Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.1
    • /
    • pp.201-209
    • /
    • 2023
  • Recently, fiber-reinforced composites have been widely used in various industrials fields. In this study, the mechanical behavior, especially fracture behavior, of biomimetic fiber-reinforced composites subjected to pressure loading was analyzed using finite element analysis (FEA). The fiber alignments in the biomimetic composites formed a helicoidal structure, wherein a stacking sequence involved a gradual rotation of each ply in the multi-layered laminated composites. For comparison, cross-ply composite samples with fibers arranged at 0° and 90° were prepared and analyzed. In addition, the mechanical behavior was analyzed based on combinations of the stacking sequence of carbon-fiber composites and glass-fiber composites. The FEA results showed that, when compared with the cross-ply samples, the mechanical properties of the biomimetic composites were considerably improved under pressure loading, which was applied to one side of the composites. Thus, the biomimetic helicoidal structure significantly improved the mechanical properties of the composites. Placing materials having high elasticity and strength in the outermost layers (the layer of the side on which pressure was applied and the opposite side layer) of the composites also significantly contributed to improving the mechanical properties of the composites.

Sizing Optimization of CFRP Lower Control Arm Considering Strength and Stiffness Conditions (강도 및 강성 조건을 고려한 탄소섬유강화플라스틱(CFRP) 로어 컨트롤 아암의 치수 최적설계)

  • Lim, Juhee;Doh, Jaehyeok;Yoo, SangHyuk;Kang, Ohsung;Kang, Keonwook;Lee, Jongsoo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.389-396
    • /
    • 2016
  • The necessity for environment-friendly material development has emerged in the recent automotive field due to stricter regulations on fuel economy and environmental concerns. Accordingly, the automotive industry is paying attention to carbon fiber reinforced plastic (CFRP) material with high strength and stiffness properties while the lightweight. In this study, we determine a shape of lower control arm (LCA) for maximizing the strength and stiffness by optimizing the thickness of each layer when the stacking angle is fixed due to the CFRP manufacturing problems. Composite materials are laminated in the order of $0^{\circ}$, $90^{\circ}$, $45^{\circ}$, and $-45^{\circ}$ with a symmetrical structure. For the approximate optimal design, we apply a sequential two-point diagonal quadratic approximate optimization (STDQAO) and use a process integrated design optimization (PIDO) code for this purpose. Based on the physical properties calculated within a predetermined range of laminate thickness, we perform the FEM analysis and verify whether it satisfies the load and stiffness conditions or not. These processes are repeated for successive improved objective function. Optimized CFRP LCA has the equivalent stiffness and strength with light weight structure when compared to conventional aluminum design.

Prediction for Fatigue Life of Composite Ply-overlap Joint Structures (복합재 플라이 오버랩 조인트 구조의 피로 수명 예측)

  • Yeju Lee;Hiyeop Kim;Jungsun Park
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.62-70
    • /
    • 2023
  • We proposed a technique for predicting Stress-Life (S-N) curve or fatigue life using geometric features of a ply-overlap joint structure in which plies of two composite materials are partially or wholly laminated and bonded. Geometric features that could affect fatigue properties of a structure were selected as variables. By analyzing relationships between geometric variables and material constants of the Epaarachchi-Clausen model, a fatigue model for composites, relational expressions of these two factors were proposed. To verify the prediction accuracy of the proposed method, fatigue life of a CFRP/GFRP ply-overlap joint was predicted. Predicted life and life obtained by test data-based model were compared to actual life. High prediction accuracy was confirmed by calculating the coefficient of determination of the predicted S-N curve.