• Title/Summary/Keyword: laminated composite structure

Search Result 191, Processing Time 0.02 seconds

Optimum Design of the Laminated Composite Sandwich Plate Structure of Truss Core considering Vibration Characteristics (복합적층 트러스 코어형 샌드위치 판구조물의 진동특성을 고려한 최적설계)

  • Jung, Suok-Mo;Hong, Do-Kwan;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.703-709
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of truss core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. In this type of structure, in the case of applying core of the laminated composite plate and antisymmetric stacking, natural frequency has high value and we calculated the optimum angle-ply making natural frequency maximum. Natural frequency of CFRP is higher than that of GFRP. Both are materials of the laminated composite plate. The mode shapes are various along with the angle-ply of the laminated composite plate.

  • PDF

Optimum Design for Iso-strain Structure of Hybrid Laminated Composite (하이브리드 적층복합재료에서의 Iso-Strain 구조설계의 최적화)

  • 강선교;이경우;강태진
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.21-29
    • /
    • 2000
  • The optimum design of hybrid laminated composites for iso-strain structure has been studied by controling fiber orientations and thicknesses of each layer. Fiber orientations and thicknesses of each layer for iso-strain structure were designed. Combining the laminates of each layer of different reinforcing material, the constitutions of hybrid laminated composite for iso-strain structure were obtained. All these calculations were formed on computer systems, automatically for the hybridization. Using the data of some specific laminated composite such as glass and aramid reinforced composites, the constitutions of hybrid laminated composites for iso-strains structure were designed and verified by lamination theory. The strains of each layer of hybrid laminated composites are calculated and they turned out to be good agreements with the results obtained lamination theory.

  • PDF

Bending Analysis of Anisotropic Sandwich Plates with Multi-layered Laminated Composite faces (다적층 복합면재를 갖는 비등방성 샌드위치판의 휨해석)

  • Ji, Hyo-Seon
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.17-26
    • /
    • 2012
  • This study presents a governing equations of bending behavior of anisotropic sandwich plates with multi-layered laminated composite faces. Based on zig-zag models for through thickness deformations, the shear deformation of composite faces is included. All edges of plate are assumed to be simply supported. Results of the bending analysis under lateral loads are presented for the influence of various lay up sequences of antisymmetric angle-ply laminated faces. The accuracy of the approach is ascertained by comparing solutions from the sandwich plates theory with composite faces to the laminated plates theory. Since the present analysis considers the bending stiffness of the core and also the transverse shear deformations of the laminated faces, the proposed method showed higher than that calculated according to the general laminated plates theory. The information presented might be useful to design sandwich plates structure with polymer matrix composite faces.

Nonlinear thermal buckling behaviour of laminated composite panel structure including the stretching effect and higher-order finite element

  • Katariya, Pankaj V.;Panda, Subrata K.;Mahapatra, Trupti R.
    • Advances in materials Research
    • /
    • v.6 no.4
    • /
    • pp.349-361
    • /
    • 2017
  • The nonlinear thermal buckling load parameter of the laminated composite panel structure is investigated numerically using the higher-order theory including the stretching effect through the thickness and presented in this research article. The large geometrical distortion of the curved panel structure due to the elevated thermal loading is modeled via Green-Lagrange strain field including all of the higher-order terms to achieve the required generality. The desired solutions are obtained numerically using the finite element steps in conjunction with the direct iterative method. The concurrence of the present nonlinear panel model has been established via adequate comparison study with available published data. Finally, the effect of different influential parameters which affect the nonlinear buckling strength of laminated composite structure are examined through numerous numerical examples and discussed in details.

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material

  • Kang, Young-Kyu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.1
    • /
    • pp.37-42
    • /
    • 2003
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping have been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

A Study on the Impact and Vibration acting on the Laminated Composite Honeycomb Core Type Sandwich Plate Structure (복합적층 하니콤 코어형 샌드위치 판구조물에 미치는 충격과 진동에 관한 연구)

  • Hong, Do-Kwan;Seo, Jin;Ahn, Chan-Woo
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.616-622
    • /
    • 2001
  • In this paper, we analyzed the laminated composite sandwich plate structure of honeycomb core with changing values of the designing parameters. As a result, in designing parameters of that, the more height and thickness of the laminated composite plate's core, the more increase of natural frequency. The laminated angle has the maximum value when the plate of honeycomb core is join to opposite direction. This paper shows that the natural frequency of CFRP is higher than that of GFRP, and also impact strength marks maximum value in case of antisymmetry than symmetry of core. Also it shows that the mode shapes are various along with the angle-ply of laminated composite plate.

  • PDF

Morphing of Composite Plate Using SMA Actuator (형상기억합금 작동기를 이용한 복합재 평판의 형상변형)

  • 김상헌;조맹효
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.10a
    • /
    • pp.146-149
    • /
    • 2003
  • Two-way shape memory effect(TWSME) under residual stresses are considered in the present study. The structure using two-way shape memory alloy(SMA) concept returns to its initial shape by increasing or decreasing temperature under the initially given residual stress. In the present study, we use a thermo-mechanical constitutive equation of SMA and laminated composite plates are considered as simple morphing structural components which are based on first order shear deformable laminated composite plate with large deflection. Numerical results of fully coupled SMA-composite structures are presented

  • PDF

Postbuckling and nonlinear vibration of composite laminated trapezoidal plates

  • Jiang, Guoqing;Li, Fengming;Zhang, Chuanzeng
    • Steel and Composite Structures
    • /
    • v.26 no.1
    • /
    • pp.17-29
    • /
    • 2018
  • The thermal effects on the buckling, postbuckling and nonlinear vibration behaviors of composite laminated trapezoidal plates are studied. Aiming at the complex plate structure and to simulate the temperature distribution of the plate, a finite element method (FEM) is applied in this paper. In the temperature model, based on the thermal diffusion equation, the Galerkin's method is employed to establish the temperature equation of the composite laminated trapezoidal plate. The geometrical nonlinearity of the plate is considered by using the von Karman large deformation theory, and combining the thermal model and aeroelastic model, Hamilton's principle is employed to establish the thermoelastic equation of motion of the composite laminated trapezoidal plate. The thermal buckling and postbuckling of the composite laminated rectangular plate are analyzed to verify the validity and correctness of the present methodology by comparing with the results reported in the literature. Moreover, the effects of the temperature with the ply-angle on the thermal buckling and postbuckling of the composite laminated trapezoidal plates are studied, the thermal effects on the nonlinear vibration behaviors of the composite laminated trapezoidal plates are discussed, and the frequency-response curves are also presented for the different temperatures and ply angles.

Vibration Control Characteristics of Laminated Composite ER Beams with Electric Field Dependence (전기장에 따른 복합재 ER Beam의 진동제어 특성)

  • 김재환;강영규;최승복
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.416-421
    • /
    • 2001
  • The flexural vibration of laminated composite beams with an electro-rheological(ER) fluid has been investigated to design a structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, mu1ti-layer laminated beams. The damping radio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. Finite element method is used for the analysis of dynamic characteristics of the laminated composite beams with an ER fluid. For the validation of modeling methodology using viscoelastic theory the predicted dynamic properties are compared to the measured ones by author's previous work. They are in good agreement. This paper addresses a design strategy of laminated composite under flexural vibrations with an ER fluid.

  • PDF

Vibration Control of Laminated Composite Beams using Active Constrained Layer Damping Treatment (능동구속감쇠 기법을 이용한 복합적층보의 진동제어)

  • Kang, Young-Kyu;Kim, Jae-Hwan;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1333-1337
    • /
    • 2000
  • The flexural vibration of laminated composite beams with active and passive constrained-layer damping has been investigated to design structure with maximum possible damping capacity. The equations of motion are derived for flexural vibrations of symmetrical, multi-layer laminated beams. The damping ratio and modal damping of the first bending mode are calculated by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations with active control.

  • PDF