• 제목/요약/키워드: laminar kinetic energy

검색결과 14건 처리시간 0.019초

PIV 계측에 의한 $180^{\circ}$곡관 출구에 연결된 직관에서 층류정상유동의 운동에너지 (Kinetic energy of Laminar Steady flows in the Exit Reguon Connected to the straight Square-sectionnal $180^{\circ}$ curved Duct by using PIV)

  • 이종구;이홍구;손현철;이행남;박길문
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.521-524
    • /
    • 2002
  • In the present study, kinetic energy of laminar steady flow in the exit region connected to the square-sectional $180^{\circ}$curved duct was investigated experimentally. The experimental study for air flows was conducted to measure kinetic energy distributions by using the Particle Image Velocimetry(PIV) system with the data acquisition and processing system of Cactus 2000 software. The results obtained from experimental studies are summarized as follows : (1) The critical Reynolds number for a change from laminar steady flow to transitional steadt flow was about 1910, in the 50 region of dimensionless axial position (x/Dh) whirh was considered as a fully developed flow region. (2) Maximum kinetic energy of laminar steady flow was gradually increased as the Reynolds number increased.

  • PDF

Unstructured discretisation of a non-local transition model for turbomachinery flows

  • Ferrero, Andrea;Larocca, Francesco;Bernaschek, Verena
    • Advances in aircraft and spacecraft science
    • /
    • 제4권5호
    • /
    • pp.555-571
    • /
    • 2017
  • The description of transitional flows by means of RANS equations is sometimes based on non-local approaches which require the computation of some boundary layer properties. In this work a non-local Laminar Kinetic Energy model is used to predict transitional and separated flows. Usually the non-local term of this model is evaluated along the grid lines of a structured mesh. An alternative approach, which does not rely on grid lines, is introduced in the present work. This new approach allows the use of fully unstructured meshes. Furthermore, it reduces the grid-dependence of the predicted results. The approach is employed to study the transitional flows in the T106c turbine cascade and around a NACA0021 airfoil by means of a discontinuous Galerkin method. The local nature of the discontinuous Galerkin reconstruction is exploited to implement an adaptive algorithm which automatically refines the mesh in the most significant regions.

수소-공기 화염의 안전성 향상을 위한 프로판 첨가 효과 (Effects of propane substitution for safety improvement of hydrogen-air flame)

  • 권오채
    • 한국수소및신에너지학회논문집
    • /
    • 제15권1호
    • /
    • pp.12-22
    • /
    • 2004
  • In order to evaluate the potential of partial hydrocarbon substitution to improve the safety of hydrogen use in general and the performance of internal combustion engines in particular, the outward propagation and development of surface cellular instability of spark-ignited spherical premixed flames of mixtures of hydrogen, hydrocarbon, and air were experimentally studied at NTP (normal temperature and pressure) condition in a constant-pressure combustion chamber. With propane being the substituent, the laminar burning velocities, the Markstein lengths, and the propensity of cell formation were experimentally determined, while the laminar burning velocities and the associated flame thicknesses were computed using a recent kinetic mechanism. Results show substantial reduction of laminar burning velocities with propane substitution, and support the potential of propane as a suppressant of both diffusional-thermal and hydrodynamic cellular instabilities in hydrogen-air flames.

다중 길이척도 난류운동에너지 생성율 모형을 이용한 가솔린 기관의 성능 시뮬레이션 (Performance Simulation of a Gasoline Engine Using Multi-Length-Scale Production Rate Model)

  • 이홍국;최영돈
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.1-14
    • /
    • 1999
  • In the present study, the flame factor which primarily influence the simulation accuracy of the combustion process in a gasoline engine was modeled as a nonlinear function of turbulent intensity to laminar flame speed ratio. Multi-length-scale production rate model for turbulent kinetic energy equation was introduced to consider the different length scales of the swirling and tumbling motions in cylinder on the production rte of turbulent kinetic energy. By7 introducing the multi-length-scale production rate model for the turbulent kinetic energy equation, the predictions of turbulent burning velocity , cylinder pressure, mass burning rate and engine performance of a gasoline engine can much be improved.

  • PDF

Bunsen Buner 난류 예혼합 화염장의 해석 (Prediction of Turbulent Premixed Flamefield in Bunsen Burner)

  • 조지호;김후중;김용모
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 제26회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.195-199
    • /
    • 2003
  • The stoichiometric methan/air premixed turbulent flames at the axisymmetric Bunsen burner situation are numerically investigated. To account for the chemistry-turbulence interaction in the turbulent premixed flames, the steady laminar flamelet library method has been adopted. The flame front is tracked by using the Level-Set Approach. Turbulence is represented by the ${\kappa}-{\varepsilon}$ modeling with a Pope's correction. The detailed comparison between prediction and measurement has made for the flame field in terms of velocity, turbulent kinetic energy, and normarlized temperature.

  • PDF

예조건화 기법을 이용한 층류 및 난류 화학반응 유동장 해석 (Numerical Simulation of Chemically Reacting Laminar and Thrbulent Flowfields Using Preconditioning Scheme)

  • 김교순;최윤호;이병옥;송봉하
    • 대한기계학회논문집B
    • /
    • 제30권4호
    • /
    • pp.320-327
    • /
    • 2006
  • The computations of chemically reacting laminar and turbulent flows are performed using the preconditioned Navier-Stokes solver coupled with turbulent transport and multi-species equations. A low-Reynolds number $k-\varepsilon$ turbulence model proposed by Chien is used. The presence of the turbulent kinetic energy tenn in the momentum equation can materially affect the overall stability of the fluids-turbulence system. Because of this coupling effect, a fully coupled formulation is desirable and this approach is taken in the present study. Choi and Merkle's preconditioning technique is used to overcome the convergence difficulties occurred at low speed flows. The numerical scheme used for the present study is based on the implicit upwind ADI algorithm and is validated through the comparisons of computational and experimental results for laminar methane-air diffusion flame and $ H_2/O_2$ reacting turbulent shear flow. Preconditioning formulation shows better convergence characteristics than that of non-preconditioned system by approximately five times as much.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 (II) (Numerical Prediction of Unsteady Transitional Boundary Layer Flows due to Rotor-Stator Interaction(II)-Characteristics of Unsteady Transitional Boundary Layer Flow-)

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.771-787
    • /
    • 1998
  • A Navier-Stokes code with a modified low Reynolds number k-.epsilon. turbulence model was used to study the unsteady transitional boundary layer flow due to rotor-stator interaction. The modification, proposed by Launder, to improve prediction of stagnation flows was incorporated to the low Reynolds number k-.epsilon. turbulence model by Fan-Lakshminarayana-Barnett. Numerical solution is shown to capture well the calmed laminar flow as well as the wake induced transitional strip due to rotor-stator interaction and shows improvement, in terms of onset of transition and its length, over previous Euler/boundary layer solution. The turbulent kinetic energy shows local maximum along the upstream rotor wake in the wake induced transitional strip and this characteristics is observed untill the end of transition. The wake induced strip also shown apparent even in the laminar sublayer as the upstream rotor wake penetrates inside the boundary layer.

The Onset of Tayler-Görtler Vortices in Impulsively Decelerating Circular Flow

  • Cho, Eun Su;Kim, Min Chan
    • Korean Chemical Engineering Research
    • /
    • 제53권5호
    • /
    • pp.609-613
    • /
    • 2015
  • The onset of instability induced by impulsive spin-down of the rigid-body flow placed in the gap between two coaxial cylinders is analyzed by using the energy method. In the present stability analysis the growth rate of the kinetic energy of the base state and also that of disturbances are taken into consideration. In the present system the primary flow is a transient, laminar one. But for the Reynolds number equal or larger than a certain one, i.e. $Re{\geq}Re_G$ secondary motion sets in, starting at a certain time. For $Re{\geq}Re_G$ the dimensionless critical time to mark the onset of vortex instabilities, ${\tau}_c$, is here presented as a function of the Reynolds number Re and the radius ratio ${\eta}$. For the wide gap case of small ${\eta}$, the transient instability is possible in the range of $Re_G{\leq}Re{\leq}Re_S$. It is found that the predicted ${\tau}_c$-value is much smaller than experimental detection time of first observable secondary motion. It seems evident that small disturbances initiated at ${\tau}_c$ require some growth period until they are detected experimentally.

터빈 동익 흡입면에서 발달하는 경계층의 유동특성 (Flow Characteristics of the Boundary Layer Developing over a Turbine Blade Suction Surface)

  • 장성일;이상우
    • 대한기계학회논문집B
    • /
    • 제39권10호
    • /
    • pp.795-803
    • /
    • 2015
  • 본 연구에서는 발전용 터빈 제 1 단 동익 흡입면에서 발달하는 경계층유동에 대하여 체계적으로 연구하였다. 이를 위해 흡입면에서 열부하가 급격하게 변화하는 대표적인 영역에 대하여, 경계층의 평균 유속, 난류강도, 에너지스펙트럼 등을 측정하였다. 그 결과 흡입면 경계층유동이 층류에서 난류 경계층으로 천이됨을 확인할 수 있었고, 이 천이경로는 박리버블의 전단층에서 주로 발생하는 박리유동 천이로 확인되었다. 흡입면에서 열부하의 최소값이 존재하는 곳은 흡입면 경계층유동의 천이가 시작되는 위치에 해당하며, 열부하가 최대인 곳은 박리유동 천이가 모두 마무리되어 벽근처에 강력한 난류유동이 존재하는 곳과 일치하였다. 에너지스펙트럼의 측정을 통하여, 흡입면 경계층의 박리유동 천이 전후에 나타나는 난류운동에너지의 주파수 특성을 자세히 파악할 수 있었다.

정익과 동익의 상호작용에 의한 비정상 천이 경계층 유동의 수치해석에 관한 연구 1

  • 강동진
    • 대한기계학회논문집B
    • /
    • 제22권6호
    • /
    • pp.757-770
    • /
    • 1998
  • A Navier-Stokes code with a low Reynolds number k-.epsilon. turbulence model was tested to investigate its predictability for the unsteady transitional boundary layer flow due to rotor-stator interaction. A preliminary calculation with three different numbers of time steps 300, 600, and 1000 for a rotor wake passing period was carried out to see the effects of time steps on the unsteady flow and pressure fields due to rotor-stator interaction. Numerical solutions showed that unsteady pressure was much more sensitive to the number of time steps and over 600 time steps should be used to get a numerical solution independent of the number of time steps for a rotor wake passing period. The original low Reynolds number k-.epsilon. turbulence model showed very poor prediction of the unsteady transitional boundary layer flow due to rotor-stator interaction. This was due to the excessive production of turbulent kinetic energy near the leading edge. A modification suggested by Launder was incorporated and the modified model captured well the wake induced transitional strip. Present solutions also showed improved prediction over previous Euler/boundary layer solution in terms of the onset of unsteady transition and its extent.