• Title/Summary/Keyword: lake water quality monitoring

Search Result 71, Processing Time 0.03 seconds

Changes in the Water Environment Based on the Statistical Data in the Lake Paldang (통계로 보는 팔당호 물환경 변화)

  • Yu, Soonju;Lee, Eunjeong;Park, Minji;Kim, Kapsoon;Im, Jongkwon;Ryu, Ingu;Choi, Hwangjeong;Byeon, Myeongseop;Noh, Hyeran
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.688-702
    • /
    • 2018
  • Since the 1970s regulations against the pollution of drinking water have been introduced in Lake Paldang watershed area. To understand the effects of water environment management policies and the impacts of climate changes on Lake Paldang, a long-term comprehensive study of this watershed and the changes in its water environment is required. In this study, we analyzed changes in the weather, hydrology, sources of pollution, water quality, and algal development from 2000 to 2015 year based on the statistical data provided by several national information systems. While the population and amount of sewage in the Lake Paldang watershed increased by about 1.5 times, the amount of animal manure showed a decreasing trend during the same period. The wastewater also increased by about 1.5 times while the amount of water intakes rose by about 1.14 times. The water quality in front of the Paldang Dam, which is the representative monitoring site of the Lake Paldang, was stable. The annual average BOD concentration remained within 2 mg/L, which is a "Good (lb)" level according to the environment standards of Republic of Korea. The development of phytoplankton and harmful cyanobacteria were largely influenced by meteorological factors.

Comparative assessment of surface and ground water quality using geoinformatics

  • Giridhar, M.V.S.S.;Mohan, Shyama;Kumar, D. Ajay
    • Advances in environmental research
    • /
    • v.9 no.3
    • /
    • pp.151-160
    • /
    • 2020
  • Water quality demonstrates physical, chemical and biological characteristics of water. The quality of surface and groundwater is currently an important concern with population growth and industrialization. Over exploitation of water resources due to demand is causing the deterioration of surface water and ground water. Periodic water quality testing must be carried out to protect our water resources. The present research analyses the spatial variation of surface water and groundwater in and around the lakes of Hyderabad. Twenty-Seven lakes and their neighboring bore water samples are obtained for water quality monitoring. Samples are evaluated for specific physico-chemical parameters such as pH, Total Dissolved Solids (TDS), Cl, SO4, Na, K, Ca, Mg, and Total Hardness (TH). The spatial variation of water quality parameters for the 27 lakes and groundwater were analysed. Correlation and multiple regression analysis were carried out to determine comparative study of lake and ground water. The study found that most of the lakes were polluted and this had an impact on surrounding ground water.

Analysis of Non-Biodegradable Organic Matter Leakage Characteristics and Correlation Analysis in Paldang Lake and its Upper Reaches (팔당호와 팔당호 상류의 난분해성 유기물질 유출 특성 분석 및 상관성 분석)

  • Chaewon Kang;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.4
    • /
    • pp.221-229
    • /
    • 2023
  • Extracted from the metropolitan area, the Paldang Lake, which supplies approximately 8 million tons of water, has achieved a BOD (Biochemical Oxygen Demand) of 1.1 mg/L as a result of water quality preservation policies. However, concerning the COD (Chemical Oxygen Demand) component that encompasses refractory organic matter, there has been an observable upward trend in concentration. The introduction of refractory organic matter into the water source of Paldang Lake brings potential increments in BOD, generates off-putting tastes and odors in tap water, increases THM (Trihalomethane) formation, and triggers algae proliferation. Moreover, if residual hazardous refractory pollutants persist in aquatic environments, they may induce endocrine disruption and phenomena such as antibiotic resistance. In this study, a monitoring campaign was executed to discern the concentration of refractory organic matter emissions from point and non-point sources within Paldang Lake and its upstream region, with the aim of managing refractory organic matter in Paldang Lake. By comparing refractory organic matter emission concentrations across monitored areas, the elimination efficiency at wastewater treatment plants was assessed. Additionally, employing the Pearson correlation correlation analysis technique, correlations among refractory organic matter indices, antecedent wet days, and antecedent dry days were explored. The concentrations of refractory organic matter in rivers and Paldang Lake exhibited a similar pattern. Wastewater treatment plant effluents exhibited higher concentrations compared to rivers and Paldang Lake. The assessment of refractory organic matter removal at wastewater treatment plants indicated a removal efficiency of 65.73%. However, no significant correlation emerged between refractory organic matter emission concentration and antecedent wet days or priory antecedent dry days. This absence of correlation is attributed to data scarcity, underscoring the need for long-term monitoring and data accumulation.

Effects of Salix subfragilis communities on water quality in Namgang Dam reservoir (남강댐 선버들 군락이 수질에 미치는 영향)

  • Kim, Ki Heung
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1065-1076
    • /
    • 2022
  • The purpose of this study was to investigate the effect of the expansion and withering of Salix subfragilis communities on the water quality in Namgang Dam reservoir. The distribution area of the Salix subfragilis communities was 0.12 km2 in 2003 for the first time, but it was 3.58 km2 in 2019, which has increased rapidly by about 30 times in 16 years. However, in 2013, the distribution area has decreased by 0.17 km2 due to long-term immersion in high turbidity, and self-thinning in Salix subfragilis communities. The lake characteristics of reservoir showed a combination of lake type and river type in terms of average water depth, watershed area/lake surface area ratio, water residence time, flushing rate, and stratification. From the result of analyzing long-term changes in lake water quality, COD, TP, and chlorophyll-a in Salix subfragilis communities were significantly larger than those in the three points located in the central part of reservoir. In particular, the fact that the value of chlorophyll-a showed the maximum value in winter rather than summer, unlike the trend of the three points in the Namgang Dam water quality monitoring network, is thought to have occurred internally rather than externally. It can be estimated that one cause of this deterioration of the water quality in Namgang Dam reservoir is the huge amount of nutrients generated in the decomposition process of by-products such as fallen leaves, branches and withered trees in Salix subfragilis communities.

Availability Evaluation of TOC as the Environmental Standard - Survey of Lakes in Nakdong River Basin - (환경기준으로서의 TOC에 대한 활용성 평가 - 낙동강수계 호소를 대상으로 -)

  • Choi, Byoungwoo;Kang, Meea
    • Journal of Wetlands Research
    • /
    • v.20 no.2
    • /
    • pp.173-180
    • /
    • 2018
  • The utilization of TOC(Total organic carbon), a new environmental standard, was evaluated for 30 lakes in the Nakdong River Basin, which is used for drinking and agricultural usage. The active use of water resources begins with securing satisfactory water quality. Since this allows people and nature to maintain stability of quality, water quality standards are being tightened to ensure good water quality. In order to improve the pollution level of organic matter in lakes in the living environment, it is important to use the appropriate organic substance index. The relationship between the newly introduced TOC and the existing COD(Chemical oxygen demand) in the targeted lake was positively correlated with the possibility of replacing the TOC with COD. However, the environmental grade standard using TOC is better than the environmental grade standard using COD, so it has the same effect as that of the grade of water quality using TOC as an organic substance factor. This indicates the limitation of TOC to directly replace existing COD when trying to determine or improve the quality level using organic indicators of lakes. Therefore, in order to secure the qualitative safety of the lake, it is required to strengthen environmental standards of TOC in terms of water quality grade. In addition, the correlation between TOC and COD shows a great difference depending on the utilization characteristics of the lake. This requires clear scientific identification, and it requires continuous monitoring of COD that has been used to accumulate indicators of lake organic matter.

Study of Airborne Remote Sensing for Water Quality Monitoring (수질오염 감시에의 활용을 위한 항공원격탐사의 적용연구)

  • 김광은;이태섭
    • Spatial Information Research
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1994
  • Recently, as remote sensing is widely used for environmental monitoring, more precise quantitative analysis of remote sensing data is required. In this paper, themat ic maps of water qual i ty factors such as chlorophyll-a, transparency, and suspended sediments were presented from the high resoltion airborne remote sensing data of HapCheon Dam. Though it was difficult to explicitly correlate remote sensing data with water quality factors due to the insufficient number of ground teuth data, the presented water quality maps showed very well the overall spatial distribution of water pollution in the Lake.

  • PDF

Bio-Optical Modeling of Laguna de Bay Waters and Applications to Lake Monitoring Using ASTER Data

  • Paringit, EC.;Nadaoka, K.;Rubio, MCD;Tamura, H.;Blanco, Ariel C.
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.667-669
    • /
    • 2003
  • A bio-optical model was developed specific for turbid and shallow waters. Special studies were carried out to estimate absorption and scattering properties as well as backscattering probability of suspended matter. The inversion of bio-optical model allows for direct retrieval of turbidity and chlorophyll- a from the visible-near infrared (VNIR) range sensor. Time-series satellite imagery from ASTER AM-1 sensor, were used to monitor the Laguna de Bay water quality condition. Spatial distribution of temperature for the lake was extracted from the thermal infrared (TIR) sensor. Corresponding field surveys were conducted to parameterize the bio -optical model. In-situ measurements include suspended particle and chlorophyll-a concentrations profiles from nephelometric devices and processing of water samples. Hyperspectral measurements were used to validate results of the bio -optical model and satellite- based estimation. This study provides a theoretical basis and a practical illustration of applying space- based measurements on an operational basis.

  • PDF

Trends of Phytoplankton Community and Water Quality and Implications for Management in Estuarine River Systems (국내 연안 하구역의 식물플랑크톤 생체량 (chlorophyll a) 및 수질 동향)

  • Lee, Chang-Hee;Cho, Ki-An;Song, Eun-Sook;Sin, Yong-Sik
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.2 s.112
    • /
    • pp.160-180
    • /
    • 2005
  • Long-term data (Ministry of Environment Water Quality Monitoring data) of phytoplankton biomass (chlorophyll a) and water quality were analyzed to investigate trends in biomass of the primary producers and water quality for the estuarine systems in Korea: Sumjin River, Han River, Asan Lake- Bay, Youngsan River, Keum River and Nakdong River. The literatures were also reviewed to examine the characteristics of phytoplankton biomass and water quality in the estuarine systems. The Sumjin River estuary, the single estuary without a dike in Korea showed the characteristics similar to other typical estuarine systems. Phytoplankton biomass was high during the fall at transitional regions (5 ${\sim}$ 15 psu) after riverine freshwater inputs were increased in summer. Concentrations of the nitrate and silicate were increased with the high river discharge rates. Phytoplankton biomass and nutrient concentrations were high during spring at the lower regions in the Han River whereas phytoplankton biomass and nutrient concentrations were high during spring at the upper regions in the Youngsan River. Phytoplankton biomass was the highest in the Asan Lake and nutrient concentrations were high at the upper region of the lake. In Nakdong River, phytoplankton biomass was high during winter and the biomass was slightly higher at upper region than at lower region. Long-term trends showed that total nitrogen and total phosphorus were mostly increased in the river systems. Implications of these results relevant to the water quality management for the river systems were also discussed.

Case Study: Operation of the Juam Constructed Wetland for Effluent from a Sewage Treatment Plant and Diffuse Pollution for Two Years (하수종말처리장 방류수와 비점오염원 처리를 위한 주암호 인공습지 2년 운영 사례)

  • Jung, Yong-Jun
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1031-1037
    • /
    • 2006
  • In order to improve water quality of the Juam Lake, a constructed wetland was implemented and operated for 2 years with the effluent of sewage treatment plant and diffuse pollutant discharged from agricultural area. During the summer season, average removal efficiencies for BOD and SS were 15.8% and 39.4%, respectively. Due to the mixed effect of vegetation, soil microbes and sediments, the higher nutrient removal efficiencies were obtained: average T-N and T-P removal efficiencies were 64.2% and 71.7%, respectively. The concentration of sediment was increased initially, and maintained constant throughout monitoring period. The highest nitrogen and phosphorus uptake were observed in Phragmites japonica. The nitrogen uptake was estimated as 0.235 DW mg/g while phosphorus uptake was estimated as 2.059 DW mg/g.