• Title/Summary/Keyword: lagrangian analysis

Search Result 547, Processing Time 0.028 seconds

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

A DUAL ITERATIVE SUBSTRUCTURING METHOD WITH A SMALL PENALTY PARAMETER

  • Lee, Chang-Ock;Park, Eun-Hee
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.2
    • /
    • pp.461-477
    • /
    • 2017
  • A dual substructuring method with a penalty term was introduced in the previous works by the authors, which is a variant of the FETI-DP method. The proposed method imposes the continuity not only by using Lagrange multipliers but also by adding a penalty term which consists of a positive penalty parameter ${\eta}$ and a measure of the jump across the interface. Due to the penalty term, the proposed iterative method has a better convergence property than the standard FETI-DP method in the sense that the condition number of the resulting dual problem is bounded by a constant independent of the subdomain size and the mesh size. In this paper, a further study for a dual iterative substructuring method with a penalty term is discussed in terms of its convergence analysis. We provide an improved estimate of the condition number which shows the relationship between the condition number and ${\eta}$ as well as a close spectral connection of the proposed method with the FETI-DP method. As a result, a choice of a moderately small penalty parameter is guaranteed.

Effects of Two Phase Flow on Erosion Characteristic in a Rocket Nozzle (2상 유동에 의한 로켓 노즐 마모 특성에 대한 고찰)

  • 김완식;유만선;조형희;배주찬
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.4
    • /
    • pp.83-92
    • /
    • 1999
  • A numerical analysis of two phase flow in the solid rocket nozzle was conducted. Stoke number was defined over the various aluminum oxide($AI_2$$O_3$) particle sizes and particle trajectories were treated by Lagrangian approach. Particle stability was considered by the definition of Weber number in a rocket nozzle. Large particles are divided after the nozzle throat as the flow accelerates rapidly. The division of particles changes the particle distribution at the nozzle exit. From the above results, it was found that the nozzle converge section surface might be affected by aluminum oxide particles. Also, Mechanical erosion rate of nozzle surface was predicted for different materials.

  • PDF

Optimal pre-conditioning and support designs of floor heave in deep roadways

  • Wang, Chunlai;Li, Guangyong;Gao, Ansen;Shi, Feng;Lu, Zhijiang;Lu, Hui
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.429-437
    • /
    • 2018
  • In order to reduce deformation of roadway floor heave in deep underground soft rockmass, four support design patterns were analyzed using the Fast Lagrangian Analysis of Continua (FLAC)3D, including the traditional bolting (Design 1), the bolting with the backbreak in floor (Design 2), the full anchorage bolting with the backbreak in floor (Design 3) and the full anchorage bolting with the bolt-grouting backbreak in floor (Design 4). Results show that the design pattern 4, the full anchorage bolting with the bolt-grouting backbreak in floor, was the best one to reduce the deformation and failure of the roadway, the floor deformation was reduced at 88.38% than the design 1, and these parameters, maximum vertical stress, maximum horizontal displacement and maximum horizontal stress, were greater than 1.69%, 5.96% and 9.97%. However, it was perfectly acceptable with the floor heave results. The optimized design pattern 4 provided a meaningful and reliable support for the roadway in deep underground coal mine.

Computation of Pressure Fields for a Hybrid Particle-Mesh Method (하이브리드 입자-격자 방법에서의 압력장 계산)

  • Lee, Seung-Jae;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.328-333
    • /
    • 2014
  • A hybrid particle-mesh method based on the vorticity-velocity formulation for solving the incompressible Navier-Stokes equations is a combination of the Vortex-In-Cell(VIC) method for convection and the penalization method for diffusion. The key feature of the numerical methods is to determine velocity and vorticity fields around a solid body on a temporary grid, and then the time evolution of the flow is computed by tracing the convection of each vortex element using the Lagrangian approach. Assuming that the vorticity and velocity fields are to be computed in time domain analysis, pressure fields are estimated through a complete set of solutions at present time step. It is possible to obtain vorticity and velocity fields prior to any pressure calculation since the pressure term is eliminated in the vorticity-velocity formulation. Therefore, pressure field is explicitly treated by solving a suitable Poisson equation. In this paper, we propose a simple way to numerically implement the vorticity-velocity-pressure formulation including a penalty term. For validation of the proposed numerical scheme, we illustrate the early development of viscous flows around an impulsive started circular cylinder for Reynolds number of 9500.

A PARTICLE TRACKING MODEL TO PREDICT THE DEBRIS TRANSPORT ON THE CONTAINMENT FLOOR

  • Bang, Young-Seok;Lee, Gil-Soo;Huh, Byung-Gil;Oh, Deog-Yeon;Woo, Sweng-Woong
    • Nuclear Engineering and Technology
    • /
    • v.42 no.2
    • /
    • pp.211-218
    • /
    • 2010
  • An analysis model on debris transport in the containment floor of pressurized water reactors is developed in which the flow field is calculated by Eulerian conservation equations of mass and momentum and the debris particles are traced by Lagrange equations of motion using the pre-determined flow field data. For the flow field calculation, two-dimensional Shallow Water Equations derived from Navier Stokes equations are solved using the Finite Volume Method, and the Harten-Lax-van Leer scheme is used for accuracy to capture the dry-to-wet interface. For the debris tracing, a simplified two-dimensional Lagrangian particle tracking model including drag force is developed. Advanced schemes to find the positions of particles over the containment floor and to determine the position of particles reflected from the solid wall are implemented. The present model is applied to calculate the transport fraction to the Hold-up Volume Tank in Advanced Power Reactors 1400. By the present model, the debris transport fraction is predicted, and the effect of particle density and particle size on transport is investigated.

Analytical model of EEG by statistical mechanics of neocortical interaction

  • Park, J.M.;M.C. Whang;B.H. Bae;Kim, S.Y.;Kim, C.J.
    • Proceedings of the ESK Conference
    • /
    • 1997.04a
    • /
    • pp.165-175
    • /
    • 1997
  • Brain potential is described by using Euler Lagrange equation derived from Lagrangian based on SMNI(Statistical Mechanics of Neocortical Interaction). It is assumed that excitatory neuron firing is amplitude-modulated dominantly by the sum of two modes of frequency ${\omega}and 2 {\omega}$ . Time series of this neuron firing is numerically calculated. $I_{L}$related to low frequency distribution of power spectrum, $I_{H}$high frequency, and S(standard deviation) are introduced for the effective extraction of the dynamic property in this simulated brain potential. $I_{L}$,$I_{H}$, and S are obtained from EEG of 4 persons in rest state and are compared with thoretical results. It is of importance in various fields related to human well-being such as comfort-pursued industrial design, psychology, medicine to characterize human emotional states by EEG analysis. The pleasant and unpleasant sensation among various emotional states would be demonstrated to be determined in terms of ${\epsilon}$ and ${\gamma}$ parameters estimated by the simulated $I_{L}$-$I_{H}$-S relations.

  • PDF

Numerical Analysis of Effects of Water Mist Injection Characteristics on Cooling Performance in Heated Chamber (미분무수 분사 특성에 따른 가열 챔버 내 냉각 성능 수치 해석)

  • Sumon, S.M.;Lee, S.W.
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.64-70
    • /
    • 2012
  • Water mist fire suppression systems which use relatively small droplets of water with high injection pressure are increasingly being used in wider applications because of its greater efficiency, low flooding damage and low toxicity. However, the performance of the system significantly relies on the water mist characteristics and it requires better understanding of fire suppression mechanism of water mist. In the present study, computational fluid dynamics simulations were carried out to investigate cooling performance of water mist in heated chamber. The gas phase was prepared with natural convection heat transfer model for incompressible ideal case and then the effects of water mist injection characteristics on cooling capabilities were investigated upon the basis of the pre-determined temperature field. For the simulation of water mist behavior, Lagrangian discrete phase model was employed by using a commercial code, FLUENT. Smaller droplet sizes, greater injection angles and higher flow rates provided relatively higher cooling performance.

Numerical Analysis of the Effect of Injection Pressure Variation on Free Spray and Impaction Spray Characteristics

  • Park, Kweon-Ha;Kim, Byung-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.236-250
    • /
    • 2000
  • Compression ignition direct injection diesel engines employed a high pressure injection system have been developed as a measure to improve a fuel efficiency and reduce harmful emissions. In order to understand the effects of the pressure variation, many experimental works have been done, however there are many difficulties to get data in engine condition. This work gives numerical results for the high pressure effects on spray characteristics in wide or limited space with near walls. The gas phase is modelled by Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled using the discrete droplet model approach in Lagrangian form and the drop behavior on a wall is calculated with a new droplet-wall interaction model based on the experiments observing individual drops. The droplet distributions, vapour fractions and gas flows are shown in various injection pressure cases. In free spray case which the injection spray has no wall impaction, the spray dispersion and vapour fraction increase and drop sizes decrease with increasing injection pressure. The same phenomena appears more clearly in wall impaction cases.

  • PDF

Multiscale modeling of elasto-viscoplastic polycrystals subjected to finite deformations

  • Matous, Karel;Maniatty, Antoinette M.
    • Interaction and multiscale mechanics
    • /
    • v.2 no.4
    • /
    • pp.375-396
    • /
    • 2009
  • In the present work, the elasto-viscoplastic behavior, interactions between grains, and the texture evolution in polycrystalline materials subjected to finite deformations are modeled using a multiscale analysis procedure within a finite element framework. Computational homogenization is used to relate the grain (meso) scale to the macroscale. Specifically, a polycrystal is modeled by a material representative volume element (RVE) consisting of an aggregate of grains, and a periodic distribution of such unit cells is considered to describe material behavior locally on the macroscale. The elastic behavior is defined by a hyperelastic potential, and the viscoplastic response is modeled by a simple power law complemented by a work hardening equation. The finite element framework is based on a Lagrangian formulation, where a kinematic split of the deformation gradient into volume preserving and volumetric parts together with a three-field form of the Hu-Washizu variational principle is adopted to create a stable finite element method. Examples involving simple deformations of an aluminum alloy are modeled to predict inhomogeneous fields on the grain scale, and the macroscopic effective stress-strain curve and texture evolution are compared to those obtained using both upper and lower bound models.