• Title/Summary/Keyword: lagrangian analysis

Search Result 547, Processing Time 0.029 seconds

Model Trajectory Simulation for the Behavior of the Namgang Dam Water in the Kangjin Bay, South Sea, Korea (남해 강진만에서 남강댐 방류수의 거동 특성 및 체류시간 추정)

  • Jung, Kwang-Young;Ro, Young-Jae;Kim, Baek-Jin;Park, Kwang-Soon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.97-108
    • /
    • 2012
  • A Lagrangian particle tracking model coupled with the ECOM3D were used to study on the behavior of fresh water released from the Namgang Dam in terms of residence time in Kangjin Bay, South Sea, Korea. Model was calibrated until skill cores for elevation, velocity, temperature and salinity are satisfied over 85%. In the numerical simulation, particles were released in 1 hour time interval from the northern boundary. The different patterns of particle trajectory are identified under the varying dynamics from tidal to density-driven current. The average residence time of total particles are approximately 65.9 hours in the entire Kangjin Bay. The average residence time were increased from 55~65 to 70~80 hours during maximum discharge period. Discharge rate of fresh water and average residence time in the Kangjin Bay is high correlated with correlation coefficient over 0.81.

Analysis of Three-dimensional Water Waves Created by a Hydrofoil Using a Higher-Order Boundary Element Method (고차경계요소법을 이용한 수중익에 대한 3차원 조파문제 해석)

  • Il-Ryong Park;Ho-Hwan Chun;Sung-Hwan Kim;Dong-Dai Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.3
    • /
    • pp.1-13
    • /
    • 1998
  • In the present paper, the hydrodynamic characteristics of three dimensional hydrofoils moving with a constant speed below the free surface using a higher-order boundary element method based on 9-node Lagrangian curvilinear elements are investigated. A bi-quadratic spline scheme is employed to improve the numerical results on the free surface. To validate the present scheme, the calculated results are compared with the analytic solutions for a submerged sphere and a spheroid showing a good agreement. For the validation of the hydrofoil study, the computed lift and drag of a hydrofoil having $NACA64_{1}A412$ section with aspect ratio(A.R.) of 4 are compared with the experimental data by Wadlin et al.[28]. The comparison covers a number of variations of angle of attack and submergence depth. Then, using an A.R. hydrofoil with NACA0012 section, the free surface on the lift and drag are investigated and these are compared with the previous results. The wave elevations and patterns created by the aforementioned submerged bodies are also investigated with Froude numbers and submergences.

  • PDF

Level Set Based Topological Shape Optimization Combined with Meshfree Method (레벨셋과 무요소법을 결합한 위상 및 형상 최적설계)

  • Ahn, Seung-Ho;Ha, Seung-Hyun;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Using the level set and the meshfree methods, we develop a topological shape optimization method applied to linear elasticity problems. Design gradients are computed using an efficient adjoint design sensitivity analysis(DSA) method. The boundaries are represented by an implicit moving boundary(IMB) embedded in the level set function obtainable from the "Hamilton-Jacobi type" equation with the "Up-wind scheme". Then, using the implicit function, explicit boundaries are generated to obtain the response and sensitivity of the structures. Global nodal shape function derived on a basis of the reproducing kernel(RK) method is employed to discretize the displacement field in the governing continuum equation. Thus, the material points can be located everywhere in the continuum domain, which enables to generate the explicit boundaries and leads to a precise design result. The developed method defines a Lagrangian functional for the constrained optimization. It minimizes the compliance, satisfying the constraint of allowable volume through the variations of boundary. During the optimization, the velocity to integrate the Hamilton-Jacobi equation is obtained from the optimality condition for the Lagrangian functional. Compared with the conventional shape optimization method, the developed one can easily represent the topological shape variations.

Spatial Analysis of Wind Trajectory Prediction According to the Input Settings of HYSPLIT Model (HYSPLIT 모형 입력설정에 따른 바람 이동경로 예측 결과 공간 분석)

  • Kim, Kwang Soo;Lee, Seung-Jae;Park, Jin Yu
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.222-234
    • /
    • 2021
  • Airborne-pests can be introduced into Korea from overseas areas by wind, which can cause considerable damage to major crops. Meteorological models have been used to estimate the wind trajectories of airborne insects. The objective of this study is to analyze the effect of input settings on the prediction of areas where airborne pests arrive by wind. The wind trajectories were predicted using the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model. The HYSPLIT model was used to track the wind dispersal path of particles under the assumption that brown plant hopper (Nilaparvata lugens) was introduced into Korea from sites where the pest was reported in China. Meteorological input data including instantaneous and average wind speed were generated using meso-scale numerical weather model outputs for the domain where China, Korea, and Japan were included. In addition, the calculation time intervals were set to 1, 30, and 60 minutes for the wind trajectory calculation during early June in 2019 and 2020. It was found that the use of instantaneous and average wind speed data resulted in a considerably large difference between the arrival areas of airborne pests. In contrast, the spatial distribution of arrival areas had a relatively high degree of similarity when the time intervals were set to be 1 minute. Furthermore, these dispersal patterns predicted using the instantaneous wind speed were similar to the regions where the given pest was observed in Korea. These results suggest that the impact assessment of input settings on wind trajectory prediction would be needed to improve the reliability of an approach to predict regions where airborne-pest could be introduced.

Analysis of Viscous Flow Around an Impulsively Started Marine Propeller Using VIC(Vortex In Cell) Method (VIC(Vortex In Cell) 방법을 이용한 순간 출발하는 프로펠러 주위의 점성유동 해석)

  • Lee, Jun-Hyeok;Kim, Yoo-Chul;Lee, Youn-Mo;Suh, Jung-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.26-32
    • /
    • 2012
  • The 3-D unsteady viscous flow around an impulsively started rotating marine propeller is simulated using VIC(Vortex-In-Cell) method which is adequate to analyze the strong vortical flow around complicatedly-shaped body. The computational procedure is governed by the vorticity transport equation in Lagrangian form. In order to solve the equation, a regular grid which is independent to the shape of a body is introduced and each term of the equation is evaluated numerically on the grid by applying immersed boundary concept. In this paper, the overall algorithm including the formulation of governing equations and boundary conditions is described and some computational results are presented with discussing their physical validity.

The Basic Study on the Technique of Fluid Flow Analysis Using the Immersed Boundary Method (가상 경계 방법을 이용한 유동 해석 기법에 관한 기초 연구)

  • Yang, Seung-Ho;Ha, Man-Yeong;Park, Il-Ryong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.6
    • /
    • pp.619-627
    • /
    • 2004
  • In most industrial applications, the geometrical complexity is combined with the moving boundaries. These problems considerably increase the computational difficulties since they require, respectively, regeneration and deformation of the grid. As a result, engineering flow simulation is restricted. In order to solve this kind of problems the immersed boundary method was developed. In this study, the immersed boundary method is applied to the numerical simulation of stationary, rotating and oscillating cylinders in the 2-dimensional square cavity. No-slip velocity boundary conditions are given by imposing feedback forcing term to the momentum equation. Besides, this technique is used with a second-order accurate interpolation scheme in order to improve the accuracy of flow near the immersed boundaries. The governing equations for the mass and momentum using the immersed boundary method are discretized on the non-staggered grid by using the finite volume method. The results agree well with previous numerical and experimental results. This study presents the possibility of the immersed boundary method to apply to the complex flow experienced in the industrial applications. The usefulness of this method will be confirmed when we solve the complex geometries and moving bodies.

Numerical Analysis of Chamber Flow and Wave Energy Conversion Efficiency of a Bottom-mounted Oscillating Water Column Wave Power Device (고정식 진동수주형 파력 발전장치의 챔버 유동 및 파에너지 변환효율 해석)

  • Koo, Weon-Cheol;Kim, Moo-Hyun;Choi, Yoon-Rak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.388-397
    • /
    • 2010
  • A two-dimensional time-domain, potential-theory-based fully nonlinear numerical wave tank (NWT) was developed by using boundary element method and the mixed Eulerian-Lagrangian (MEL) approach for free-surface node treatment. The NWT was applied to prediction of primary wave energy conversion efficiency of a bottom-mounted oscillating water column (OWC) wave power device. The nonlinear free-surface condition inside the chamber was specially devised to represent the pneumatic pressure due to airflow velocity and viscous energy loss at the chamber entrance due to wave column motion. The newly developed NWT technique was verified through comparison with given experimental results. The maximum energy extraction was estimated with various chamber-air duct volume ratios.

Damage Assessment of Free-fall Dropped Object on Sub-seabed in Offshore Operation

  • Won, Jonghwa;Kim, Youngho;Park, Jong-Sik;Kang, Hyo-dong;Joo, YoungSeok;Ryu, Mincheol
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.1 no.4
    • /
    • pp.198-210
    • /
    • 2015
  • This paper presents the damage assessment of a free-fall dropped object on the seabed. The damage to a dropped object totally depends on the relationship between the impact energy and the soil strength at the mudline. In this study, unexpected dropping scenarios were first assumed by varying the relevant range of the impact velocity, structure geometry at the moment of impact, and soil strength profile along the penetration depth. Theoretical damage assessments were then undertaken for a free-fall dropping event with a fixed final embedment depth for the structure. This paper also describes the results of a three-dimensional large deformation finite element analysis undertaken for the purpose of validation. The analyses were carried out using the coupled Eulerian-Lagrangian approach, modifying the simple elastic-perfectly plastic Tresca soil model. The validation exercises for each dropping scenario showed good agreement, and the present numerical approach was capable of predicting the behavior of a free-fall dropped object.

A Study on the Dispersion of Air Pollutants in Local Circulation of Mesoscale (중규모 국지 순환에서 대기 오염 물질의 확산에 관한 연구)

  • 이화운;오은주
    • Journal of Environmental Science International
    • /
    • v.3 no.1
    • /
    • pp.39-47
    • /
    • 1994
  • Dispersion characteristics of air pollutants in the mountainous coastal area are investigated in considering with the mesoscale local circulations using a two dimensional numerical model with two kinds of topograpy of 500m and 300m. In the model, land-sea breezes and mountain-valley wind are mainly considered under the condition of the absence of large scale prevailing flow in the circulation analysis, and the pollutants dispersion is traced by the Lagrangian methods. According to the results, the wind velocity is affected by topography and is stronger in the case of 500m height mountain than that of 300m, the Pollutants that source is near the coast transported over the mountain and dispersed to behind inland area. It is classified that the topography change control affects the wind velocity and the circulations. The pollutants that source is different transported and concentrated to behind inland and/or diffused to the sea area by the combination of the wind system with topographic changes. The results can be applied to the air pollution control with the arrangement design of industrial area and the planning of coastal developments.

  • PDF

Dynamic Modeling of 2 DOF Parallel Manipulator (2 자유도 병렬 메니퓰레이터의 동적 모델링)

  • Lee, Jong Gyu;Lee, Sang Ryong;Lee, Choon Young;Yang, Seung Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.897-904
    • /
    • 2014
  • In this paper, two-DOF parallel manipulator has the sliders which execute a linear reciprocating motion depending on parallel guides and the end-effector which can be adjusted arbitrarily. To investigate the dynamic characteristics of the manipulator, the dynamic performance index is used. The index is able to be obtained by the relation between the Jacobian matrix and the inertia matrix. The kinematic and the dynamic analysis find these matrices. Also, the dynamic model of the manipulator is derived from the Lagrange formula. This model represents complicated nonlinear equations of motion. With the simulation results of the dynamic characteristic of the manipulator, we find that the dynamic performance index is based on the selection of the ranges for the continuous movement of the manipulator and the dynamic model derived can be used to the control algorithm development of the manipulator.