• 제목/요약/키워드: lagrange multipliers method

검색결과 62건 처리시간 0.019초

국부 및 혼합 Lagrange 승수법을 이용한 영역분할 기반 유한요소 구조해석 기법 개발 (Development of Finite Element Domain Decomposition Method Using Local and Mixed Lagrange Multipliers)

  • 곽준영;조해성;신상준;올리비에 보쇼
    • 한국전산구조공학회논문집
    • /
    • 제25권6호
    • /
    • pp.469-476
    • /
    • 2012
  • 본 논문에서는 대규모 구조해석을 위하여 국부(local) 및 전역-국부 혼합(mixed) Lagrange 승수(Lagrange multiplier)를 이용한 새로운 유한요소 영역분할 기법을 제시한다. 제시되는 FETI 알고리즘은 계산 효율성을 향상시키기 위하여 기존의 FETI 기법들에서 사용되어 온 전통적인 Lagrange 승수법과는 달리, 국부 및 전역-국부 혼합 Lagrange 승수를 도입하고 ALF(Augmented Lagrangian Formulation)과의 결합을 유도하여 공유면 문제(interface problem)의 해의 수렴성을 향상 시켰다. 추가적으로, 몇 가지 수치예제 계산을 통해 기존의 FETI-DP 기법과 비교하여 유연도 행렬의 조건수, 계산 시간 그리고 메모리 사용량에 대한 계산결과를 제시하였다.

라그랑주 승수법의 교수·학습에 대한 소고: 라그랑주 승수법을 활용한 주성분 분석 사례 (A Study on Teaching the Method of Lagrange Multipliers in the Era of Digital Transformation)

  • 이상구;남윤;이재화
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제37권1호
    • /
    • pp.65-84
    • /
    • 2023
  • 라그랑주 승수법(Method of Lagrange Multipliers)은 등식 제약조건하에서 미분가능한 함수의 최대, 최소를 구하는 대표적인 방법이다. 선형대수학, 최적화 이론, 제어 이론을 포함하여 최근에는 인공지능 기초수학에서도 널리 활용되고 있다. 특히 라그랑주 승수법은 미분적분학과 선형대수학을 연결하는 중요한 도구이며, 주성분 분석(Principal Component Analysis, PCA)을 포함한 인공지능 알고리즘에 많이 활용되고 있다. 따라서 교수자는 대학 미분적분학에서 처음 라그랑주 승수법을 접하는 학생들에게 구체적인 학습 동기를 제공할 필요가 생겼다. 이에 본 논문에서는 교수자가 학생들에게 라그랑주 승수법을 효과적으로 교육하는데 필요한 통합적인 시야를 제공한다. 먼저 다양한 전공의 학생들이 계산에 대한 부담을 덜고 원리를 쉽게 이해할 수 있도록 개발한 시각화 자료 및 파이썬(Python) 기반의 SageMath 코드를 제공한다. 또한 라그랑주 승수법으로 행렬의 고윳값과 고유벡터를 유도하는 과정을 상세히 소개한다. 그리고 라그랑주 승수법을 간단한 경우에 대한 증명에서 시작하여 일반화된 최적화 문제로 확장하고, 수업에서 학생들이 라그랑주 승수와 PCA를 활용하여 실제 데이터를 분석한 결과를 추가하였다. 본 연구는 대학수학을 지도하는 다양한 전공의 교수자들에게 도움이 될 기초자료가 될 것이다.

MULTI-DEGREE REDUCTION OF BÉZIER CURVES WITH CONSTRAINTS OF ENDPOINTS USING LAGRANGE MULTIPLIERS

  • Sunwoo, Hasik
    • 충청수학회지
    • /
    • 제29권2호
    • /
    • pp.267-281
    • /
    • 2016
  • In this paper, we consider multi-degree reduction of $B{\acute{e}}zier$ curves with continuity of any (r, s) order with respect to $L_2$ norm. With help of matrix theory about generalized inverses we can use Lagrange multipliers to obtain the degree reduction matrix in a very simple form as well as the degree reduced control points. Also error analysis comparing with the least squares degree reduction without constraints is given. The advantage of our method is that the relationship between the optimal multi-degree reductions with and without constraints of continuity can be derived explicitly.

라그랑지승수 수정에 의한 효율적인 동적부하배분 알고리즘 (An efficient dynamic load dispatch algorithm with Lagrange multipliers adjustment)

  • 송길영;오광희;김용하
    • 대한전기학회논문지
    • /
    • 제45권4호
    • /
    • pp.467-473
    • /
    • 1996
  • This Paper presents a new algorithm to solve Dynamic Economic Dispatch problem. Proposed algorithm is composed of two computational modules; one is dispatch, the other adjusting module. In the dispatch module based on the traditional Static Economic Dispatch method, the power dispatch of each unit is calculated. And in case the results of dispatch module violate ramp rate constraints, Lagrange multipliers are adjusted in the adjusting module. Tests and computer results on test systems are given to show the efficiency of the proposed algorithm. (author). 11 refs., 6 figs., 4 tabs.

  • PDF

손실감도를 이용한 계통손실 최적화에 대하여 (On The Optimal Generation Using The Loss Sensitivities Derived by Angle Reference Transposition)

  • 양성덕;이상중
    • 조명전기설비학회논문지
    • /
    • 제19권1호
    • /
    • pp.59-63
    • /
    • 2005
  • 전력계통을 효율적으로 운용하려면 관련량을 정확하고 신속히 계산하는 좋은 알고리즘이 필요하다. 최근 IEEE Transaction on Power System에 위상각 이동을 이용한 손실 최적화 알고리즘이 발표되었다. 동일한 손실최적화 문제를 본 논문에서는 Standard method of Lagrange Multiplier 기법을 적용하여 해석하였으며, 그 결과 저자들은 두 가지 방법이 수학적으로 동일함을 증명하였다.

ADVANCED DOMAIN DECOMPOSITION METHOD BY LOCAL AND MIXED LAGRANGE MULTIPLIERS

  • Kwak, Junyoung;Chun, Taeyoung;Cho, Haeseong;Shin, Sangjoon;Bauchau, Olivier A.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제18권1호
    • /
    • pp.17-26
    • /
    • 2014
  • This paper presents development of an improved domain decomposition method for large scale structural problem that aims to provide high computational efficiency. In the previous researches, we developed the domain decomposition algorithm based on augmented Lagrangian formulation and proved numerical efficiency under both serial and parallel computing environment. In this paper, new computational analysis by the proposed domain decomposition method is performed. For this purpose, reduction in computational time achieved by the proposed algorithm is compared with that obtained by the dual-primal FETI method under serial computing condition. It is found that the proposed methods significantly accelerate the computational speed for a linear structural problem.

On the use of the Lagrange Multiplier Technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit

  • Hedayati, P.;Azhari, M.;Shahidi, A.R.;Bradford, M.A.
    • Structural Engineering and Mechanics
    • /
    • 제26권6호
    • /
    • pp.673-685
    • /
    • 2007
  • Reinforced concrete beams can be strengthened in a structural retrofit process by attaching steel plates to their sides by bolting. Whilst bolting produces a confident degree of shear connection under conditions of either static or seismic overload, the plates are susceptible to local buckling. The aim of this paper is to investigate the local buckling of unilaterally-restrained plates with point supports in a generic fashion, but with particular emphasis on the provision of the restraints by bolts, and on the geometric configuration of these bolts on the buckling loads. A numerical procedure, which is based on the Rayleigh-Ritz method in conjunction with the technique of Lagrange multipliers, is developed to study the unilateral local buckling of rectangular plates bolted to the concrete with various arrangements of the pattern of bolting. A sufficient number of separable polynomials are used to define the flexural buckling displacements, while the restraint condition is modelled as a tensionless foundation using a penalty function approach to this form of mathematical contact problem. The additional constraint provided by the bolts is also modelled using Lagrange multipliers, providing an efficacious method of numerical analysis. Local buckling coefficients are determined for a range of bolting configurations, and these are compared with those developed elsewhere with simplifying assumptions. The interaction of the actions in bolted plates during buckling is also considered.

Prediction Intervals for LS-SVM Regression using the Bootstrap

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권2호
    • /
    • pp.337-343
    • /
    • 2003
  • In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

PENALIZED APPROACH AND ANALYSIS OF AN OPTIMAL SHAPE CONTROL PROBLEM FOR THE STATIONARY NAVIER-STOKES EQUATIONS

  • Kim, Hong-Chul
    • 대한수학회지
    • /
    • 제38권1호
    • /
    • pp.1-23
    • /
    • 2001
  • This paper is concerned with an optimal shape control problem for the stationary Navier-Stokes system. A two-dimensional channel flow of an incompressible, viscous fluid is examined to determine the shape of a bump on a part of the boundary that minimizes the viscous drag. by introducing an artificial compressibility term to relax the incompressibility constraints, we take the penalty method. The existence of optima solutions for the penalized problem will be shown. Next, by employing Lagrange multipliers method and the material derivatives, we derive the shape gradient for the minimization problem of the shape functional which represents the viscous drag.

  • PDF

라그랑지 승수를 사용한 계통의 FACTS 기기 설치비용 함수의 최적화 기법 (Optimal technique of cost function for FACTS operation in power system using Lagrange Multipliers)

  • 박성욱;백영식;서보혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.15-17
    • /
    • 2004
  • The flexible AC transmissions system (FACTS) is the underpinning concept upon which are based promising means to avoid effectively power flow bottlenecks and ways to extend the loadability of existing power transmission networks. This paper proposes a method by which the optimal locations of the FACTS to be installed in power system under cost function. The optimal solution of this type of problem requires large scale nonlinear optimisation techniques. We used Lagrange multipliers to solve a nonlinear equation with equality and ineaquality constraints. Case studies on the standard IEEE 14 bus system show that the method can be implemented successfully and that it is effective for determining the optimal location of the FACTS

  • PDF