• Title/Summary/Keyword: lactic

Search Result 4,223, Processing Time 0.041 seconds

Isolation and Characterization of a Novel Lactic Acid Bacterium for the Production of Lactic Acid

  • Wee, Young-Jung;Yun, Jong-Sun;Park, Don-Hee;Ryu, Hwa-Won
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.9 no.4
    • /
    • pp.303-308
    • /
    • 2004
  • We isolated a novel lactic acid bacterium from a Korean traditional fermented food, soybean paste. The newly isolated strain, dubbed RKY2, grew well on glucose, sucrose, galactose, and fructose, but it could not utilize xylose, starch, or glycerol. When the partially amplified 16S rDNA sequence (772 bp) of the strain RKY2 was compared with 10 reference strains, it was found to be most similar to Lactobacillus pentosus JCM $1588^T$, with 99.74% similarity. There-fore, the strain RKY2 was renamed Lactobacillus sp. RKY2, which has been deposited in the Korean Collection for Type Cultures as KCTC 10353BP. Lactobacillus sp. RKY2 was found to be a homofermentative lactic acid bacterium, because its end-product from glucose metabolism was found to be mainly lactic acid. It could produce more than 90 g/L of lactic acid from MRS medium supplemented with 100 g/L of glucose, with 5.2 g $L^-1$ $h^-1$ of productivity and 0.95 g/g of lactic acid yield.

Effect of Freezing and Lyophilization on Lactic Starter Cell (동결 및 동결건조가 Lactic Starter Cell에 미치는 영향)

  • 이상기;박무영
    • Microbiology and Biotechnology Letters
    • /
    • v.8 no.1
    • /
    • pp.19-25
    • /
    • 1980
  • Trials of investigating the effect of freezing and lyophilization, as the practical lactic starter preservation methods, on the viability and lactic acid producing activity of Lactobacillus bulgaricus NLS-4 have been carried out. After the treatments, both of viability and activity were decreased. However, when the initial cell cocentration was increared, the survival rate against freezing could be raised to 46% and the activity to 0.25% lactic acid whereas those against lyophilization were 22 % and 0.29% lactic acid, respectively. There were further increased maximally when the cell suspension was subjected to freezing and lyophilization after the addition of protective agents such as glycerol and the G. C. G. S. suspending medium.

  • PDF

Effect of Fermentation Conditions on L-Lactic Acid Production from Soybean Straw Hydrolysate

  • Wang, Juan;Wang, Qunhui;Xu, Zhong;Zhang, Wenyu;Xiang, Juan
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.1
    • /
    • pp.26-32
    • /
    • 2015
  • Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30℃ when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

Hepatoprotective Effect of Lactic Acid Bacteria, Inhibitors of $\beta$-Glucuronidase Production Against Intestinal Microflora

  • Han Song Yi;Huh Chul Sung;Ahn Young Tae;Lim Kwang Sei;Baek Young Jin;Kim Dong Hyun
    • Archives of Pharmacal Research
    • /
    • v.28 no.3
    • /
    • pp.325-329
    • /
    • 2005
  • The hepatoprotective activity of lactic acid bacteria (Lactobacillus brevis HY7401, Lactobacillus acidophilus CSG and Bifidobacterium longum HY8001), which inhibited $\beta$-glucuronidase productivity of intestinal microflora, on t-BHP- or CCl$_4$-induced hepatotoxicity of mice were evaluated. These oral administration of lactic acid bacteria lowered $\beta$-glucuronidase production of intestinal microflora as well as Escherichia coli HGU-3. When lactic acid bacteria at a dose of 0.5 or 2 g (wet weight)/kg was orally administered on CCl$_4$-induced liver injury in mice, these bacteria significantly inhibited the increase of plasma alanine transferase and aspartate transferase activities by $17-57\%$ and $57-66\%$ of the $CCI_4$ control group, respectively. These lactic acid bacteria also showed the potent hepatoprotective effect against t-BHP-induced liver injury in mice. The inhibitory effects of these lactic acid bacteria were more potent than that of dimethyl diphenyl bicarboxylate (DDB), which have been used as a commercial hepatoprotective agent. Among these lactic acid bacteria, L. acidophilus CSG exhibited the most potent hepatoprotective effect. Based on these findings, we insist that an inhibitor of $\beta$-glucuronidase production in intestine, such as lactic acid bacteria, may be hepatoprotective.

Encapsulation of Lactic Acid in Starch by Extrusion for using as pH Regulated Binder of Meat Products

  • Hong, Geun-Pyo;Lee, Yeun-Sul;Baek, Ji-Yoo;Choi, Mi-Jung
    • Food Science of Animal Resources
    • /
    • v.32 no.2
    • /
    • pp.155-161
    • /
    • 2012
  • This study was carried out to investigate the encapsulation of lactic acid in starch matrix for the application into emulsified sausages. For the encapsulation of lactic acid in starch, the extrusion method was applied, by the different extrusion pressure level. The particle size and morphology of lactic acid containing starch granules and the rate of release of lactic acid from those granules were determined by using Mastersizer$^{(R)}$, a scanning electron microscopy, and electrical conductivity. The size varied slightly depending upon the extruder pressure and influenced entrapment efficiency. Lactic acid was released more slowly, when the extruder had fewer holes, which meant higher extrusion pressure, than when the extruder had more holes. Extruder pressure is therefore critical for producing finer granules that can retain lactic acid longer, during the processing of meat products.

Antibacterial Effect of Eucalyptus Oil, Tea Tree Oil, Grapefruit Seed Extract, Potassium Sorbate, and Lactic Acid for the development of Feminine Cleansers

  • Yuk, Young Sam
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.82-92
    • /
    • 2021
  • Purpose: It has been reported that the diversity and abundance of microbes in the vagina decrease due to the use of antimicrobial agents, and the high recurrence rate of female vaginitis due to this suggests that a new treatment is needed. Methods: In the experiment, we detected that 10% potassium sorbate solution, 1% eucalyptus oil solution, 1% tea tree oil solution, 400 µL/10 mL grapefruit seed extract solution, 100% lactic acid, 10% acetic acid solution, and 10% lactic acid solution were prepared and used. After adjusting the pH to 4, 5, and 6 with lactic acid and acetic acid in the mixed culture medium, each bacterium was inoculated into the medium and incubated for 72 h at 35℃. Incubate and 0 h each. 24 h. 48 h. The number of bacteria was measured after 72 h. Results: In the mixed culture test between lactic acid bacteria and pathogenic microorganisms, lactic acid bacteria showed good results at pH 5-5.5. Potassium sorbate, which has varying antibacterial activity based on the pH, killed pathogenic bacteria and allowed lactic acid bacteria to survive at pH 5.5. Conclusion: The formulation ratio obtained through this study could be used for the development of a feminine cleanser that can be used as a substitute for antibacterial agents. Further, the findings of this study may be able to solve the problem of antimicrobial resistance in the future.

Optimization of Precipitation Process for the Recovery of Lactic Acid (Lactic acid 회수를 위한 침전공정 최적화)

  • Choi, Kook-Hwa;Chang, Yong-Keun;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.26 no.1
    • /
    • pp.13-18
    • /
    • 2011
  • In this study, precipitation process was developed for the recovery of the lactic acid from calcium lactate fermentation broth. Calcium lactate yield was improved by decreasing the solubility of calcium lactate through the addition of ethanol (25%, v/v) as a co-precipitant. The optimal lime type, lime concentration, stirrer speed, precipitation time, temperature, and solvent amount for $Ca(LA)_2$ precipitation were CaO, 0.0175 g/mL, 220 rpm, 24 h, $5^{\circ}C$, ethanol 25% (v/v), respectively. Lactic acid was easily and efficiently recovered from precipitated $Ca(LA)_2$ by adding sulfuric acid ($Ca(LA)_2/H_2SO_4$ molar ratio=1:1). In the model solution of organic acids and fermentation broth, the overall yields of recovered lactic acid were 62% and 55%, respectively, under the aforementioned optimal conditions.

Inactivation of Escherichia coli O157:H7, Salmonella Enteritidis and Listeria monocytogenes by Hydrogen Peroxide and Lactic acid (과산화수소와 유산ol Escherichia coli O157:H7, Salmonella Enteritidis 및 Listeria monocytogenes의 증식 억제에 미치는 영향)

  • Jang Jae-Seon;Lee Mi-Yeon;Lee Jea-Mann;Kim Yong-Hee
    • Journal of environmental and Sanitary engineering
    • /
    • v.19 no.4 s.54
    • /
    • pp.69-75
    • /
    • 2004
  • The inhibitory effect of the food processing agent on growth of Escherichia coli O157:H7, Salmonella Enteritidis, and Listeria monocytogenes was performed with hydrogen peroxide and lactic acid, and combination of hydrogen peroxide and lactic acid. The minimun inhibitory concentration (MIC) of hydrogen peroxide in E coli O157:H7 was 100 ppm at pH 5.0, 6.0, 6.5 and 7.0, while in Listeria monocytogenes 25 ppm at PH 5.5, 6.0 and 50 ppm at PH 6.5, 75ppm at pH 7.0. MIC of lactic acid in E coli O157:H7 was 2500 ppm at pH 5.0, 6.0, 6.5 and 7.0. MIC of lactic acid in S. Enteritidis was 1250 ppm at pH 5.0, 2500 ppm at pH 5.5, 6.0, 5.5 and 7.0, while in L monocytogenes 625 ppm at pH 5.5 and 125 ppm at pH 6.0, 6.5 and 7.0. MIC of combined hydrogen Peroxide and lactic acid in E. coli O157:H7, S. Enteritidis, and L. monocytogenes was 75 ppm of hydrogen peroxide with 2500 ppm of lactic acid at pH 6.5. The correlations between MICs of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogene were obtained through the coefficient of $determination(R^2)$. $R^2$ value were 0.9994, 0.9935 and 0.9283, respectively. The inhibitory effect of hydrogen peroxide and lactic acid in E. coli O157:H7, S. Enteritidis and L. monocytogenes could be confirmed from the result of this experiment. Therefore, it was expected that the food process would increase or maintain by using lactic acid together with hydrogen peroxide.

Physicochemical Properties of Rice Flour by Lactic Acid Fermentation (유산균을 이용한 발효 쌀가루의 이화학적 특성)

  • Choi, Yoon-Hee;Kim, Sang-Bum;Cho, Yong-Sik;Kim, Eun-Mi;Park, Shin-Young;Kim, Tae-Young
    • The Korean Journal of Community Living Science
    • /
    • v.21 no.4
    • /
    • pp.509-515
    • /
    • 2010
  • The physicochemical properties of the lactic acid fermented rice flour prepared using ABT-L(mixture of Lactobacillus acidophilus, Bacillus longum, Streptococcus thermophilus) were investigated. The efficiency of deproteinizing of lactic acid fermentated rice was higher than soaking fermented rice. The structural properties of lactic acid fermented rice flour showed slightly decreased inner particle size but maintained regular structural form. Molar mass and molar size after being treated with soaking or lactic acid fermentation were decreased. Amylograms except for pasting temperature of lactic acid fermented rice flours or soaking fermented rice flours were more significantly decreased than the control sample. The ratio of flours passed through 100 mesh and 150 mesh sieves of lactic acid fermented rice flours were higher than soaking fermented rice flours. Lactic acid fermented rice flours being passed through 100 mesh sieves showed finer particle flours than those treated with soaking. These results showed that lactic acid fermentation, which can have a high efficiency on the deproteinizing of rice, contributed to the changes of particle size and its distribution of rice flour.

Isolation and Characteristics of a Homofermentative lactic Acid Bacterium (호모발효 젖산군의 분리 및 특성)

  • 하미영;정선용;김성준
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.333-338
    • /
    • 2002
  • This study was targeted to isolate and characterize a bacterium producing lactic acid in a large amount. Lactic acid bacteria of about fifty strains were isolated from kimchi, a Korean traditional fermented vegetable food. Strain KH-1 of them was most effective in the lactic acid production and showed 99% homology with Lactobacillus casei from analysis of 16S rRNA sequencing. The conversion ratio of lactic acid from glucose by 1. casei KH-1 was 98% in anaerobic condition, and the lactic acid was composed as racemic mixture of D(-)-and L(+)-lactic acid, 7% and 93%, respectively. This result indicated that L. casei KH-1 was a homofermentative bacterium mainly producing L(+)-lactic acid. The strain KH-1 used glucose as a preferential substrate but not utilized lactose. In investigation of more inexpensive nitrogen source for cultivation of strain KH-1 using industrial MRS medium, when yeast extract and corn steep liquor were used at the ratio of 1 to 1, the molar yield of lactic acid produced per mole of glucose(Yp/s) was 1.09.