• 제목/요약/키워드: lactate dehydrogenase activity

검색결과 393건 처리시간 0.031초

Dual Role of Acidic Diacetate Sophorolipid as Biostabilizer for ZnO Nanoparticle Synthesis and Biofunctionalizing Agent Against Salmonella enterica and Candida albicans

  • Basak, Geetanjali;Das, Devlina;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권1호
    • /
    • pp.87-96
    • /
    • 2014
  • In the present study, a yeast species isolated from CETP, Vellore, Tamilnadu was identified as Cryptococcus sp. VITGBN2 based on molecular techniques and was found to be a potent producer of acidic diacetate sophorolipid in mineral salt media containing vegetable oil as additional carbon source. The chemical structure of the purified biosurfactant was identified as acidic diacetate sophorolipid through GC-MS analysis. This sophorolipid was used as a stabilizer for synthesis of zinc oxide nanoparticles (ZON). The formation of biofunctionalized ZON was characterized using UV-visible spectroscopy, XRD, scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy. The antimicrobial activities of naked ZON and sophorolipid functionalized ZON were tested based on the diameter of inhibition zone in agar well diffusion assay, microbial growth rate determination, protein leakage analysis, and lactate dehydrogenase assay. Bacterial pathogen Salmonella enterica and fungal pathogen Candida albicans showed more sensitivity to sophorolipid biofunctionalized ZON compared with naked ZON. Among the two pathogens, S. enterica showed higher sensitivity towards sophorolipid biofunctionalized ZON. SEM analysis showed that cell damage occurred through cell elongation in the case of S. enterica, whereas cell rupture was found to occur predominantly in the case of C. albicans. This is the first report on the dual role of yeast-mediated sophorolipid used as a biostabilizer for ZON synthesis as well as a novel functionalizing agent showing antimicrobial property.

Protein kinase A 억제제인 KT5720이 글루카곤 매개성 항산화 효소의 발현감소에 미치는 영향 (Effects of the Protein Kinase A Inhibitor KT5720 on Glucagon-Mediated Decrease in Expression of Antioxidant Enzymes)

  • 오수진;조재훈;박창식;김상겸;김봉희
    • Environmental Analysis Health and Toxicology
    • /
    • 제21권3호
    • /
    • pp.245-253
    • /
    • 2006
  • We reported previously that glucagon decreased alpha- and pi-class glutathione S-transferases (GSTs) and microsomal epoxide hydrolase (mEN) protein levels in primary cultured rat hepatocytes. The present study examines the effects of Protein kinase A (PKA) inhibitor, KT5720, on the glucagon-mediated decrease in expression of GSTs and mEN. To assess cell viability. lactate dehydrogenase release and MTT activity were examined in hepatocytes treated KT5720. Cell viability was significantly decreased in a concentration dependent manner after incubation with KT5720 at the concentrations of 1 $\mu$M or above for 24 h, which was inhibited by the cytochrome P450 inhibitor SKF-525A. In contrast, another PKA inhibitor H89 (up to 25 $\mu$M) was not toxic to hepatocytes. The glucagon-mediated decrease in expression of alpha- and pi-class GSTs and mEH was completely inhibited by 25 $\mu$M H89 and attenuated by 0.1 $\mu$M KT5720. This study demonstrates that KT5720 may cause cytotoxicity in rat hepatocytes through cytochrome P450-dependent bioactivation. The present study implicates PKA in mediating the inhibitory effect of glucagon on expression of alpha- and pi- class GSTs and mEH.

Protective Effect of Processed Panax ginseng, Sun Ginseng on UVB-irradiated Human Skin Keratinocyte and Human Dermal Fibroblast

  • Lee, Hye-Jin;Lee, Joo-Yeop;Song, Kyu-Choon;Kim, Jin-Hee;Park, Jeong-Hill;Chun, Kwang-Hoon;Hwang, Gwi-Seo
    • Journal of Ginseng Research
    • /
    • 제36권1호
    • /
    • pp.68-77
    • /
    • 2012
  • In this study, we investigated the protective effects of processed Panax ginseng, sun ginseng (SG) against the UVB-irradiation on epidermal keratinocytes and dermal fibroblasts. Pretreatment of SG in HaCaT keratinocytes and human dermal fibroblasts reduced UVB-induced cell damage as seen by reduced lactate dehydrogenase release. We also found that SG restored the UVB-induced decrease in anti-apoptotic gene expression (bcl-2 and bcl-xL) in these cells, indicating that SG has an anti-apoptotic effect and thus can protect cells from cell death caused by strong UVB radiation. In addition, SG inhibited the excessive expression of c-jun and c-fos gene by the UVB in HeCaT cells and human dermal fibroblasts. We also demonstrated that SG may exert an anti-inflammatory activity by reducing the nitric oxide production and inducible nitric oxide synthase mRNA synthesis in HaCaT keratinocytes and human dermal fibroblasts. This was further supported by its inhibitory effects on the elevated cyclooxygenase-2 and tumor necrosis factor-${\alpha}$ transcription which was induced by UVB-irradiation in HaCaT cells. In addition, SG may have anti-aging property in terms of induction of procollagen gene expression and inhibition of the matrix metalloprotease-1 gene expression caused by UVB-exposure. These findings suggest that SG can be a potential agent that may protect against the dermal cell damage caused by UVB.

cAMP 증가 유도 약물의 대식세포- 및 T 세포-매개성 면역반응 조절작용 (Immunomodulatory Effect of cAMP-Elevating Agents on Macrophage- and T cell-Mediated Immune Responses)

  • 이만휘;조재열
    • 약학회지
    • /
    • 제51권1호
    • /
    • pp.35-43
    • /
    • 2007
  • To investigate the immunomodulatory roles of cyclic AMP (CAMP) on macrophage- and T lymphocyte-mediated immune responses, CAMP elevating agents were employed and carefully re-examined under the activation conditions of the cells. Various inhibitors tested dose-dependently blocked tumor necrosis factor (TNF)-${\alpha}$ production with IC$_{50}$ values ranged from 0.04 to 300 ${\mu}$M. Of the inhibitors, cAMP-elevating agents showed lower cytotoxicity assessed by lactate dehydrogenase (LDH) release, suggesting less toxic and more selective. In particular co-treatment of dbcAMP with a protein kinase C inhibitor staurosporine displayed the synergistic inhibition of TNF-${\alpha}$ production. The modulatory effect of dbcAMP on TNF-${\alpha}$ and nitric oxide (NO) was significantly affected by treatment time of dbcAMP. Thus, post-treatment of dbcAMP (three hours before LPS) abrogated dbcAMP's inhibitory activity and rather enhanced TNF-${\alpha}$ level up to 60%. In contrast, additional NO production was shown at the co-treatment of dbcAMP with LPS. Unlike simultaneous treatment of phorbol 12-myristate 13-acetate (PMA) and interferon (IFN)-${\gamma}$co-treatment, the combination of dbcAMP with other NO-inducing stimuli did not show drastic overproduction of NO. cAMP elevating agents also diminished splenocyte proliferation stimulated by concanavalin (Con) A, phytohemaglutinin A (PHA) and lipopolysaccharide (LPS). In addition, dbcAMP but not rolipram strongly suppressed CD8$^+$ T cells (CTLL-2). Finally, cAMP elevating agents were differentially involved in regulating CD98-mediated cell-cell adhesion. Thus, dbcAMP and rolipram significantly enhanced the cell-cell adhesion, whereas forskolin blocked. Therefore, our results suggest that CAMP elevating agents participate in various immune responses mediated by macrophages and T cells with a different fashion depending on cellular environments and activation signals.

Effect of Bevacizumab on Human Tenon's Fibroblasts Cultured from Primary and Recurrent Pterygium

  • Park, Young Min;Kim, Chi Dae;Lee, Jong Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권4호
    • /
    • pp.357-363
    • /
    • 2015
  • The purpose of this study was to compare the inhibitory effect of bevacizumab on human Tenon's fibroblasts (HTFs) cultured from primary and recurrent pterygium. Cultured HTFs were exposed to 2.0, 5.0, 7.5, and 15.0 mg/mL concentration of bevacizumab for 24 hours. The 3-[4,5-dimethylthiazol- 2-yl]-2,5-diphenyl tetrazolium bromide and lactate dehydrogenase leakage assays were then performed to assess fibroblast metabolism and viability. The matrix metalloproteinase (MMP), procollagen type I C terminal propeptide (PIP), and laminin immunoassays were performed to examine extracellular matrix production. Changes in cellular morphology were examined by phase-contrast and transmission electron microscopy. Both metabolic activity and viability of primary and recurrent pterygium HTFs were inhibited by bevacizumab in a dose-dependent manner, especially at concentrations greater than 7.5 mg/mL. Both types of HTFs had significant decreases in MMP-1, PIP, and laminin levels. Distinctly, the inhibitory effect of bevacizumab on MMP-1 level related with collagenase in primary pterygium HTFs was significantly higher than that of recurrent pterygium. Significant changes in cellular density and morphology both occurred at bevacizumab concentrations greater than 7.5 mg/mL. Only primary pterygium HTFs had a reduction in cellular density at a bevacizumab concentration of 5.0 mg/mL. Bevacizumab inhibits primary and recurrent pterygium HTFs in a dose-dependent manner, especially at concentrations greater than 7.5 mg/mL. As the primary HTFs produces larger amounts of MMP-1 compared to recurrent HTFs, significant reduction in MMP-1 level in primary pterygium HTFs after exposure to bevacizumab is likely to be related to the faster cellular density changes in primary pterygium HTFs.

역충전재의 생체적합성에 관한 연구 (BIOCOMPATIBILITY OF RETROGRADE FILLING MATERIALS)

  • 임미경
    • Restorative Dentistry and Endodontics
    • /
    • 제25권1호
    • /
    • pp.63-70
    • /
    • 2000
  • The properties of ideal retrograde filling materials include the ability to seal the root canal system in three dimensions and well tolerated by periradicular tissues. Biocompatibility testing has been done mainly with cytotoxicity tests using cell culture. Little attention has been paid to the potential adverse influence on the inflammatory and immune reaction in the periapical tissue. The purpose of this study was to investigate the effects of retrograde filling materials on human mononuclear cells in vitro. Freshly mixed and set specimens from six materials (Z100, Tetric Ceram, Fuji II, Fuji II LC, F2000, Compoglass Flow, and ZOE) were eluated with cell culture medium for 24 hours. Cytotoxic effects of these extracts were evaluated by determining cell viability and enzyme activity using MTT and lactate dehydrogenase (LD). The production of inflammatoy bone resorptive cytokine, TNF-${\alpha}$ was measured from human peripheral blood mononuclear cells (PBMC) exposed to the extracts by means of Endogen Human TNF-${\alpha}$ ELISA kit (Wobrun, MA, U.S.A.). Eluates and diluted (1 : 10) eluates with cell culture medium from freshly mixed Fuji IT had cytotoxic effects on mononuclear cells using MTT and LD. However, eluates from set Fuji II were not cytotoxic. Eluates form set ZOE exhibited cytotoxicity with LD test. TNF-${\alpha}$ levels were high in eluates from freshly mixed Fuji II and Z100. Diluted eluates from freshly mixed Z100 and F2000 stimulated the production of TNF-${\alpha}$. However, there were no significant difference in TNF-${\alpha}$ levels compared to controls. These results indicate that some materials could possibly stimulate bone resorption in the periapical tissue by means of the production of bone resorptive cytokine.

  • PDF

Genome-Wide Transcriptional Response During the Development of Bleomycin-Induced Pulmonary Fibrosis in Sprague-Dawley Rats

  • Park, Han-Jin;Yang, Mi-Jin;Oh, Jung-Hwa;Yang, Young-Su;Kwon, Myung-Sang;Song, Chang-Woo;Yoon, Seok-Joo
    • Toxicological Research
    • /
    • 제26권2호
    • /
    • pp.137-147
    • /
    • 2010
  • Pulmonary fibrosis is a common consequence of many lung diseases and a leading cause of morbidity and mortality. The molecular mechanisms underlying the development of pulmonary fibrosis remain poorly understood. One model used successfully to study pulmonary fibrosis over the past few decades is the bleomycin-induced pulmonary fibrosis model. We aimed to identify the genes associated with fibrogenesis using an Affymetrix GeneChip system in a bleomycin-induced rat model for pulmonary fibrosis. To confirm fibrosis development, several analyses were performed, including cellular evaluations using bronchoalveolar lavage fluid, measurement of lactate dehydrogenase activity, and histopathological examinations. Common aspects of pulmonary fibrosis such as prolonged inflammation, immune cell infiltration, emergence of fibroblasts, and deposition of extracellular matrix and connective tissue elements were observed. Global gene expression analysis revealed significantly altered expression of genes ($\geq$ 1.5-fold, p < 0.05.) in a time-dependent manner during the development of pulmonary fibrosis. Our results are consistent with previous results of well-documented gene expression. Interestingly, the expression of triggering receptor expressed on myeloid cells 2 (Trem2), secreted phosphoprotein 1 (Spp1), and several proteases such as Tpsab1, Mcpt1, and Cma1 was considerably induced in the lung after bleomycin treatment, despite little evidence that they are involved in pulmonary fibrogenesis. These data will aid in our understanding of fibrogenic mechanisms and contribute to the identification of candidate biomarkers of fibrotic disease development.

급성관동맥증후군 관련 검사 (Tests for Acute Coronary Syndrome)

  • 김경동
    • Journal of Yeungnam Medical Science
    • /
    • 제18권1호
    • /
    • pp.13-29
    • /
    • 2001
  • The enzyme activities of creatine kinase (CK), its isoenzyme MB (CK-MB) and of lactate dehydrogenase isoenzyme 1 (LD-1) have been used for years in diagnosing patients with chest pain in order to differentiate patients with acute myocardial infarction (AMI) from non-AMI patients. These methods are easy to perform as automated analyses, but they are not specific for cardiac muscle damage. During the early 90's the situation changed. First, creatine kinase ME mass (CK-MB mass) replaced the measurement of CK-MB activity. Subsequently cardiac-specific proteins, troponin T (cTnT) and troponin I (cTnI) appeared and displacing LD-1 analysis. However, troponin concentrations in blood increase only from four to six hours after onset of chest pain. Therefore a rapid marker such as myoglobin, fatty acid binding protein or glycogen phosphorylase BB could be used in early diagnosis of AMI. On the other hand, CK-MB isoforms alone may also be useful in rapid diagnosis of cardiac muscle damage. Myoglobin, CK-MB mass, cTnT and cTnI are nowadays widely used in diagnosing patients with acute chest pain. Myoglobin is not cardiac-specific and therefore requires supplementation with some other analyses such as troponins to support the myoglobin value. Troponins are very highly cardiac-specific. Only the sera of some patients with severe renal failure, which requires hemodialysis, have elevated cTnT and/or cTnI without there being any evidence of cardiac damage. The latest studies have shown that elevated troponin levels in sera of hemodialysis patients point to an increased risk of future cardiac events in a similar manner to the elevated troponin values in sera of patients with unstable angina pectoris. In addition, the bedside tests for cTnT and cTnI alone- or together with myoglobin and CK-ME mass can be used instead of quantitative analyses in the diagnosis of patients with chest pain. These rapid tests are easy to perform and they do not require expensive instrumentation. For the diagnosis of patient with chest pain, routinely myoglobin and CK-ME mass measurements should be performed whenever they are requested (24 h/day) and cTnT or cTnI on admission to the hospital and then 4-6 and 12 hours later and maintained less than 10% in imprecision.

  • PDF

Hydrogen sulfide restores cardioprotective effects of remote ischemic preconditioning in aged rats via HIF-1α/Nrf2 signaling pathway

  • Wang, Haixia;Shi, Xin;Cheng, Longlong;Han, Jie;Mu, Jianjun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권3호
    • /
    • pp.239-249
    • /
    • 2021
  • The present study explored the therapeutic potential of hydrogen sulfide (H2S) in restoring aging-induced loss of cardioprotective effect of remote ischemic preconditioning (RIPC) along with the involvement of signaling pathways. The left hind limb was subjected to four short cycles of ischemia and reperfusion (IR) in young and aged male rats to induce RIPC. The hearts were subjected to IR injury on the Langendorff apparatus after 24 h of RIPC. The measurement of lactate dehydrogenase, creatine kinase and cardiac troponin served to assess the myocardial injury. The levels of H2S, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), nuclear factor erythroid 2-related factor 2 (Nrf2), and hypoxia-inducible factor (HIF-1α) were also measured. There was a decrease in cardioprotection in RIPC-subjected old rats in comparison to young rats along with a reduction in the myocardial levels of H2S, CBS, CSE, HIF-1α, and nuclear: cytoplasmic Nrf2 ratio. Supplementation with sodium hydrogen sulfide (NaHS, an H2S donor) and l-cysteine (H2S precursor) restored the cardioprotective actions of RIPC in old hearts. It increased the levels of H2S, HIF-1α, and Nrf2 ratio without affecting CBS and CSE. YC-1 (HIF-1α antagonist) abolished the effects of NaHS and l-cysteine in RIPC-subjected old rats by decreasing the Nrf2 ratio and HIF-1α levels, without altering H2S. The late phase of cardioprotection of RIPC involves an increase in the activity of H2S biosynthetic enzymes, which increases the levels of H2S to upregulate HIF-1α and Nrf2. H2S has the potential to restore aging-induced loss of cardioprotective effects of RIPC by upregulating HIF-1α/Nrf2 signaling.

A formulated red ginseng extract inhibits autophagic flux and sensitizes to doxorubicin-induced cell death

  • Park, Han-Hee;Choi, Seung-Won;Lee, Gwang Jin;Kim, Young-Dae;Noh, Hyun-Jin;Oh, Seung-Jae;Yoo, Iseul;Ha, Yu-Jin;Koo, Gi-Bang;Hong, Soon-Sun;Kwon, Sung Won;Kim, You-Sun
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.86-94
    • /
    • 2019
  • Background: Ginseng is believed to have antitumor activity. Autophagy is largely a prosurvival cellular process that is activated in response to cellular stressors, including cytotoxic chemotherapy; therefore, agents that inhibit autophagy can be used as chemosensitizers in cancer treatment. We examined the ability of Korean Red Ginseng extract (RGE) to prevent autophagic flux and to make hepatocellular carcinoma (HCC) cells become more sensitive to doxorubicin. Methods: The cytotoxic effects of total RGE or its saponin fraction (RGS) on HCC cells were examined by the lactate dehydrogenase assay in a dose- or time-dependent manner. The effect of RGE or RGS on autophagy was measured by analyzing microtubule-associated protein 1A/1B-light chain (LC)3-II expression and LC3 puncta formation in HCC cells. Late-stage autophagy suppression was tested using tandem-labeled green fluorescent protein (GFP)-monomeric red fluorescent protein (mRFP)-LC3. Results: RGE markedly increased the amount of LC3-II, but green and red puncta in tandem-labeled GFP-mRFP-LC3 remained colocalized over time, indicating that RGE inhibited autophagy at a late stage. Suppression of autophagy through knockdown of key ATG genes increased doxorubicin-induced cell death, suggesting that autophagy induced by doxorubicin has a protective function in HCC. Finally, RGE and RGS markedly sensitized HCC cells, (but not normal liver cells), to doxorubicin-induced cell death. Conclusion: Our data suggest that inhibition of late-stage autophagic flux by RGE is important for its potentiation of doxorubicin-induced cancer cell death. Therapy combining RGE with doxorubicin could serve as an effective strategy in the treatment of HCC.