DOI QR코드

DOI QR Code

Genome-Wide Transcriptional Response During the Development of Bleomycin-Induced Pulmonary Fibrosis in Sprague-Dawley Rats

  • Park, Han-Jin (Division of Research and Development, Korea Institute of Toxicology) ;
  • Yang, Mi-Jin (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Oh, Jung-Hwa (Division of Research and Development, Korea Institute of Toxicology) ;
  • Yang, Young-Su (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Kwon, Myung-Sang (Division of Research and Development, Korea Institute of Toxicology) ;
  • Song, Chang-Woo (Division of Inhalation Toxicology, KIT Jeongeup Campus) ;
  • Yoon, Seok-Joo (Division of Research and Development, Korea Institute of Toxicology)
  • Received : 2010.02.22
  • Accepted : 2010.04.06
  • Published : 2010.06.01

Abstract

Pulmonary fibrosis is a common consequence of many lung diseases and a leading cause of morbidity and mortality. The molecular mechanisms underlying the development of pulmonary fibrosis remain poorly understood. One model used successfully to study pulmonary fibrosis over the past few decades is the bleomycin-induced pulmonary fibrosis model. We aimed to identify the genes associated with fibrogenesis using an Affymetrix GeneChip system in a bleomycin-induced rat model for pulmonary fibrosis. To confirm fibrosis development, several analyses were performed, including cellular evaluations using bronchoalveolar lavage fluid, measurement of lactate dehydrogenase activity, and histopathological examinations. Common aspects of pulmonary fibrosis such as prolonged inflammation, immune cell infiltration, emergence of fibroblasts, and deposition of extracellular matrix and connective tissue elements were observed. Global gene expression analysis revealed significantly altered expression of genes ($\geq$ 1.5-fold, p < 0.05.) in a time-dependent manner during the development of pulmonary fibrosis. Our results are consistent with previous results of well-documented gene expression. Interestingly, the expression of triggering receptor expressed on myeloid cells 2 (Trem2), secreted phosphoprotein 1 (Spp1), and several proteases such as Tpsab1, Mcpt1, and Cma1 was considerably induced in the lung after bleomycin treatment, despite little evidence that they are involved in pulmonary fibrogenesis. These data will aid in our understanding of fibrogenic mechanisms and contribute to the identification of candidate biomarkers of fibrotic disease development.

Keywords

References

  1. Ashcroft, T., Simpson, J.M. and Timbrell, V. (1988). Simple method of estimating severity of pulmonary fibrosis on a numerical scale. J. Clin. Pathol., 41, 467-470. https://doi.org/10.1136/jcp.41.4.467
  2. Belperio, J.A., Keane, M.P., Burdick, M.D., Lynch, J.P., 3rd, Xue, Y.Y., Berlin, A., Ross, D.J., Kunkel, S.L., Charo, I.F. and Strieter, R.M. (2001). Critical role for the chemokine MCP-1/CCR2 in the pathogenesis of bronchiolitis obliterans syndrome. J. Clin. Invest., 108, 547-556. https://doi.org/10.1172/JCI200112214
  3. Cortijo, J., Cerda-Nicolas, M., Serrano, A., Bioque, G., Estrela, J.M., Santangelo, F., Esteras, A., Llombart-Bosch, A. and Morcillo, E.J. (2001). Attenuation by oral N-acetylcysteine of bleomycin-induced lung injury in rats. Eur. Respir. J., 17, 1228-1235. https://doi.org/10.1183/09031936.01.00049701
  4. Doucet, C., Brouty-Boye, D., Pottin-Clemenceau, C., Canonica, G.W., Jasmin, C. and Azzarone, B. (1998). Interleukin (IL) 4 and IL-13 act on human lung fibroblasts. Implication in asthma. J. Clin. Invest., 101, 2129-2139. https://doi.org/10.1172/JCI741
  5. Fertin, C., Nicolas, J.F., Gillery, P., Kalis, B., Banchereau, J. and Maquart, F.X. (1991). Interleukin-4 stimulates collagen synthesis by normal and scleroderma fibroblasts in dermal equivalents. Cell. Mol. Biol., 37, 823-829.
  6. Fichtner-Feigl, S., Strober, W., Kawakami, K., Puri, R.K. and Kitani, A. (2006). IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat. Med., 12, 99-106. https://doi.org/10.1038/nm1332
  7. Gharaee-Kermani, M., Hu, B., Phan, S.H. and Gyetko, M.R. (2008). The role of urokinase in idiopathic pulmonary fibrosis and implication for therapy. Expert. Opin. Investig. Drugs, 17, 905-916. https://doi.org/10.1517/13543784.17.6.905
  8. Gharaee-Kermani, M. and Phan, S.H. (2005). Molecular mechanisms of and possible treatment strategies for idiopathic pulmonary fibrosis. Curr. Pharm. Des., 11, 3943-3971. https://doi.org/10.2174/138161205774580561
  9. Gharaee-Kermani, M., Ullenbruch, M. and Phan, S.H. (2005). Animal models of pulmonary fibrosis. Methods Mol. Med., 117, 251-259.
  10. Gorelik, L. and Flavell, R.A. (2002). Transforming growth factorbeta in T-cell biology. Nat. Rev. Immunol., 2, 46-53. https://doi.org/10.1038/nri704
  11. Hoffmann, K.F., McCarty, T.C., Segal, D.H., Chiaramonte, M., Hesse, M., Davis, E.M., Cheever, A.W., Meltzer, P.S., Morse, H.C., 3rd and Wynn, T.A. (2001). Disease fingerprinting with cDNA microarrays reveals distinct gene expression profiles in lethal type 1 and type 2 cytokine-mediated inflammatory reactions. Faseb. J., 15, 2545-2547.
  12. Jakubzick, C., Choi, E.S., Carpenter, K.J., Kunkel, S.L., Evanoff, H., Martinez, F.J., Flaherty, K.R., Toews, G.B., Colby, T.V., Travis, W.D., Joshi, B.H., Puri, R.K., and Hogaboam, C.M. (2004). Human pulmonary fibroblasts exhibit altered interleukin-4 and interleukin-13 receptor subunit expression in idiopathic interstitial pneumonia. Am. J. Pathol., 164, 1989-2001. https://doi.org/10.1016/S0002-9440(10)63759-5
  13. Jordana, M., Dolovich, M., Irving, L.B., Tomioka, M., Befus, D., Gauldie, J. and Newhouse, M.T. (1988). Solute movement across the alveolar-capillary membrane after intratracheally administered bleomycin in rats. Am. Rev. Respir. Dis., 138, 96-100. https://doi.org/10.1164/ajrccm/138.1.96
  14. Kaminski, N., Allard, J.D., Pittet, J.F., Zuo, F., Griffiths, M.J., Morris, D., Huang, X., Sheppard, D. and Heller, R.A. (2000). Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation andfibrosis. Proc. Natl. Acad. Sci. USA, 97, 1778-1783. https://doi.org/10.1073/pnas.97.4.1778
  15. Kang, H.R., Cho, S.J., Lee, C.G., Homer, R.J. and Elias, J.A. (2007). Transforming growth factor (TGF)-beta1 stimulates pulmonary fibrosis and inflammation via a Bax-dependent, bidactivated pathway that involves matrix metalloproteinase-12. J. Biol. Chem., 282, 7723-7732.
  16. Katsuma, S., Nishi, K., Tanigawara, K., Ikawa, H., Shiojima, S., Takagaki, K., Kaminishi, Y., Suzuki, Y., Hirasawa, A., Yano J., Murakami, Y. and Tsujimoto G. (2001). Molecular monitoring of bleomycin-induced pulmonary fibrosis by cDNA microarray-based gene expression profiling. Biochem. Biophys. Res.Commun., 288, 747-751. https://doi.org/10.1006/bbrc.2001.5853
  17. Kuwano, K., Hagimoto, N. and Hara, N. (2001). Molecular mechanisms of pulmonary fibrosis and current treatment. Curr. Mol. Med., 1,551-573. https://doi.org/10.2174/1566524013363401
  18. Lloyd, C.M., Minto, A.W., Dorf, M.E., Proudfoot, A., Wells, T.N., Salant, D.J. and Gutierrez-Ramos, J.C. (1997). RANTES and monocyte chemoattractant protein-1 (MCP-1) play an important role in the inflammatory phase of crescentic nephritis, but only MCP-1 is involved in crescent formation and interstitial fibrosis. J. Exp. Med., 185, 1371-1380. https://doi.org/10.1084/jem.185.7.1371
  19. Ma, B., Zhu, Z., Homer, R.J., Gerard, C., Strieter, R. and Elias, J.A. (2004). The C10/CCL6 chemokine and CCR1 play critical roles in the pathogenesis of IL-13-induced inflammation and remodeling. J. Immunol., 172, 1872-1881. https://doi.org/10.4049/jimmunol.172.3.1872
  20. Matsui, Y., Jia, N., Okamoto, H., Kon, S., Onozuka, H., Akino, M., Liu, L., Morimoto, J., Rittling, S.R., Denhardt, D., Kitabatake, A. and Uede, T. (2004). Role of osteopontin in cardiac fibrosis and remodeling in angiotensin II-induced cardiac hypertrophy. Hypertension, 43, 1195-1201. https://doi.org/10.1161/01.HYP.0000128621.68160.dd
  21. Moeller, A., Ask, K., Warburton, D., Gauldie, J. and Kolb, M. (2008). The bleomycin animal model: a useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol., 40, 362-382. https://doi.org/10.1016/j.biocel.2007.08.011
  22. Moore, B.B., Paine, R., 3rd, Christensen, P.J., Moore, T.A., Sitterding, S., Ngan, R., Wilke, C.A., Kuziel, W.A. and Toews, G.B. (2001). Protection from pulmonary fibrosis in the absence of CCR2 signaling. J. Immunol., 167, 4368-4377.
  23. Munger, J.S., Huang, X., Kawakatsu, H., Griffiths, M.J., Dalton, S.L., Wu, J., Pittet, J.F., Kaminski, N., Garat, C., Matthay, M.A., Rifkin, D.B. and Sheppard, D. (1999). The integrin alpha v beta 6 binds and activates latent TGF beta 1: a mechanism for regulating pulmonary inflammation and fibrosis. Cell, 96, 319-328. https://doi.org/10.1016/S0092-8674(00)80545-0
  24. Murray, L.A., Argentieri, R.L., Farrell, F.X., Bracht, M., Sheng, H., Whitaker, B., Beck, H., Tsui, P., Cochlin, K., Evanoff, H.L., Hogaboam, C.M. and Das, A.M. (2008). Hyper-responsiveness of IPF/UIP fibroblasts: interplay between TGFbeta1, IL-13 and CCL2. Int. J. Biochem. Cell. Biol., 40, 2174-2182. https://doi.org/10.1016/j.biocel.2008.02.016
  25. Oh, J.H., Yang, M.J., Yang, Y.S., Park, H.J., Heo, S.H., Lee, E.H., Song, C.W. and Yoon, S. (2009). Microarray-based analysis of the lung recovery process after stainless-steel welding fume exposure in Sprague-Dawley rats. Inhal. Toxicol., 21, 347-373. https://doi.org/10.1080/08958370802464281
  26. Perbal, B. (2004). CCN proteins: multifunctional signalling regulators. Lancet, 363, 62-64. https://doi.org/10.1016/S0140-6736(03)15172-0
  27. Piguet, P.F., Collart, M.A., Grau, G.E., Sappino, A.P. and Vassalli, P. (1990). Requirement of tumour necrosis factor for development of silica-induced pulmonary fibrosis. Nature, 344, 245-247. https://doi.org/10.1038/344245a0
  28. Pottier, N., Chupin, C., Defamie, V., Cardinaud, B., Sutherland, R., Rios, G., Gauthier, F., Wolters, P.J., Berthiaume, Y., Barbry, P. and Mari, B. (2007). Relationships between early inflammatory response to bleomycin and sensitivity to lung fibrosis: a role for dipeptidyl-peptidase I and tissue inhibitor of metalloproteinase-3? Am. J. Respir. Crit. Care. Med., 176, 1098-1107. https://doi.org/10.1164/rccm.200607-1051OC
  29. Prasse, A., Stahl, M., Schulz, G., Kayser, G., Wang, L., Ask, K., Yalcintepe, J., Kirschbaum, A., Bargagli, E., Zissel, G., Kolb, M., Muller-Quernheim, J., Weiss, J.M. and Renkl, A.C. 2009. Essential role of osteopontin in smoking-related interstitial lung diseases. Am. J. Pathol., 174, 1683-1691. https://doi.org/10.2353/ajpath.2009.080689
  30. Roberts, A.B., Russo, A., Felici, A. and Flanders, K.C. (2003). Smad3: a key player in pathogenetic mechanisms dependent on TGF-beta. Ann. N. Y. Acad. Sci., 995, 1-10. https://doi.org/10.1111/j.1749-6632.2003.tb03205.x
  31. Sakanashi, Y., Takeya, M., Yoshimura, T., Feng, L., Morioka, T. and Takahashi, K. (1994). Kinetics of macrophage subpopulations and expression of monocyte chemoattractant protein-1 (MCP-1) in bleomycin-induced lung injury of rats studied by a novel monoclonal antibody against rat MCP-1. J. Leukoc. Biol., 56, 741-750.
  32. Sandler, N.G., Mentink-Kane, M.M., Cheever, A.W. and Wynn, T.A. (2003). Global gene expression profiles during acute pathogen-induced pulmonary inflammation reveal divergent roles for Th1 and Th2 responses in tissue repair. J. Immunol., 171, 3655-3667. https://doi.org/10.4049/jimmunol.171.7.3655
  33. Selman, M., Thannickal, V.J., Pardo, A., Zisman, D.A., Martinez, F.J. and Lynch, J.P., 3rd. (2004). Idiopathic pulmonary fibrosis: pathogenesis and therapeutic approaches. Drugs, 64, 405-430. https://doi.org/10.2165/00003495-200464040-00005
  34. Sime, P.J., Xing, Z., Graham, F.L., Csaky, K.G. and Gauldie, J. (1997). Adenovector-mediated gene transfer of active transforming growth factor-beta1 induces prolonged severe fibrosis in rat lung. J. Clin. Invest., 100, 768-776. https://doi.org/10.1172/JCI119590
  35. Smith, R.E., Strieter, R.M., Zhang, K., Phan, S.H., Standiford, T.J., Lukacs, N.W. and Kunkel, S.L. (1995). A role for C-C chemokines in fibrotic lung disease. J. Leukoc. Biol., 57, 782-787.
  36. Tokuda, A., Itakura, M., Onai, N., Kimura, H., Kuriyama, T. and Matsushima, K. (2000). Pivotal role of CCR1-positive leukocytes in bleomycin-induced lung fibrosis in mice. J. Immunol., 164, 2745-2751. https://doi.org/10.4049/jimmunol.164.5.2745
  37. van den Brule, S., Misson, P., Buhling, F., Lison, D. and Huaux, F. (2005). Overexpression of cathepsin K during silica-induced lung fibrosis and control by TGF-beta. Respir. Res., 6, 84. https://doi.org/10.1186/1465-9921-6-84
  38. Wynn, T.A. (2004). Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat. Rev. Immunol., 4, 583-594. https://doi.org/10.1038/nri1412
  39. Wynn, T.A., Cheever, A.W., Jankovic, D., Poindexter, R.W., Caspar, P., Lewis, F.A. and Sher, A. (1995). An IL-12-based vaccination method for preventing fibrosis induced by schistosome infection. Nature, 376, 594-596. https://doi.org/10.1038/376594a0
  40. Zhang, H.Y., Gharaee-Kermani, M., Zhang, K., Karmiol, S. and Phan, S.H. (1996). Lung fibroblast alpha-smooth muscle actin expression and contractile phenotype in bleomycin-induced pulmonary fibrosis. Am. J. Pathol., 148, 527-37.
  41. Zhang, K., Gharaee-Kermani, M., Jones, M.L., Warren, J.S. and Phan, S.H. (1994). Lung monocyte chemoattractant protein-1 gene expression in bleomycin-induced pulmonary fibrosis. J. Immunol., 153, 4733-4741.
  42. Zhu, Z., Homer, R.J., Wang, Z., Chen, Q., Geba, G.P., Wang, J., Zhang, Y. and Elias, J.A. (1999). Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production. J. Clin. Invest., 103, 779-788. https://doi.org/10.1172/JCI5909
  43. Zuo, F., Kaminski, N., Eugui, E., Allard, J., Yakhini, Z., Ben-Dor, A., Lollini, L., Morris, D., Kim, Y., DeLustro, B., Sheppard, D., Pardo, A., Selman, M. and Heller, R.A. (2002). Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans. Proc. Natl. Acad. Sci. USA,99, 6292-6297. https://doi.org/10.1073/pnas.092134099