• Title/Summary/Keyword: lactate dehydrogenase activity

Search Result 393, Processing Time 0.024 seconds

Hepatoprotective Effect of Flavonol Glycosides Rich Fraction from Egyptian Vicia calcarata Desf. Against $CCl_4$-Induced Liver Damage in Rats

  • Singab, Abdel Nasser B.;Youssef, Diaa T.A.;Noaman, Eman;Kotb, Saeed
    • Archives of Pharmacal Research
    • /
    • v.28 no.7
    • /
    • pp.791-798
    • /
    • 2005
  • The hepatoprotective activity of flavonol glycosides rich fraction (F-2), prepared from 70% alcohol extract of the aerial parts of V calcarata Desf., was evaluated in a rat model with a liver injury induced by daily oral administration of $CCl_4$ (100 mg/kg, b.w) for four weeks. Treatment of the animals with F-2 using a dose of (25 mg/kg, b.w) during the induction of hepatic damage by $CCl_4$ significantly reduced the indices of liver injuries. The hepatoprotective effects of F-2 significantly reduced the elevated levels of the following serum enzymes: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). The antioxidant activity of F-2 markedly ameliorated the antioxidant parameters including glutathione (GSH) content, glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), plasma catalase (CAT) and packed erythrocytes glucose-6-phosphate dehydrogenase (G6PDH) to be comparable with normal control levels. In addition, it normalized liver malondialdehyde (MDA) levels and creatinine concentration. Chromatographic purification of F-2 resulted in the isolation of two flavonol glycosides that rarely occur in the plant kingdom, identified as quercetin-3,5-di-O-$\beta$-D-diglucoside (5) and kaempferol-3,5-di-O-$\beta$-D-diglucoside (4) in addition to the three known compounds identified as quercetin-3-O-$\alpha$-L-rhamnosyl- (${\rightarrow}6$)-$\beta$-D-glucoside [rutin, 3], quercetin-3-O-$\beta$-D-glucoside [isoquercitrin, 2] and kaempferol-3-O-$\beta$-D-glucoside [astragalin, 1]. These compounds were identified based on interpretation of their physical, chemical, and spectral data. Moreover, the spectrophotometric estimation of the flavonoids content revealed that the aerial parts of the plant contain an appreciable amount of flavonoids (0.89%) calculated as rutin. The data obtained from this study revealed that the flavonol glycosides of F-2 protect the rat liver from hepatic damage induced by $CCl_4$ through inhibition of lipid peroxidation caused by $CCl_4$ reactive free radicals.

Serum Enzyme and Isozyme Activities of Rats Acclimated to Cold Environment (寒冷環境에 순화시킨 흰쥐의 血淸酵素 및 同位酵素의 活性)

  • 정애순;남상열
    • The Korean Journal of Zoology
    • /
    • v.29 no.2
    • /
    • pp.107-120
    • /
    • 1986
  • The activities of serum of serum lactate dehydrogenase (SLDH), serum alkaline phosphatase (SALP), serum creatine phosphokinase (SCPK), and their isozymes were determined in adult male Sprague-Dawley rats acclimated to cold environment $(4\\pm1^\\circC)$ for 36 days. The SLDH activity was significantly higher in the early stage of acclimated period. The steady state of SLDH activity seemed to be reached by the end of acclimated period. Electrophoretic separation of serum of control rat showed three SLDH isozymes. Isozymes SLDH4 and SLDH5 appeared most prominently, whereas only trace of SLDH1 or SLDH2 was found. The increase in SLDH level during acclimation to cold environment is a reflection of an immediate increase in the SLDH1, SLDH2, and SLDH3 type of SLDH isozyme. The acclimation to cold environment increased significantly level of SALP in the early state of acclimated period. SALP activity showed a attaining steady state with the resting level after transient rise. Electrophoretic separation of SALP of control rats showed the SALP1 and SALP2 fractions. The transient rise in SALP activity of rats acclimated to cold environment coincided with a transient rise in SALP1 fraction. Immediately after exposure to cold environment, there was significant elevation in SCPK activity. Value returned to normal after transient rise. A new steady state of SCPK activity seemed to be reached by 36 days. It may be inferred from the above data that thermal compensation appears to result from a change in the activity of an enzyme and that the SLDH, SLDH-isozyme, SALP-isozyme, and SCPK may be involved directly or indirectly in thermoregulation during acclimation to cold environment.

  • PDF

Effects of Chitosanoligosaccharide on the Hepatotoxicity in Cadmium-treated Mice (키토산올리고당이 카드뮴을 투여한 생쥐의 간독성에 미치는 효과)

  • Yoon, Jung-Sik;Roh, Young-Bok
    • Applied Microscopy
    • /
    • v.33 no.1
    • /
    • pp.59-78
    • /
    • 2003
  • This research was conducted to determine the effects of chitosanoligosaccharide on liver poisoning induced by cadmium (Cd). Three groups of mice were used in this research. The first group was only injected with cadmium (5.0 mg/kg; i.p.) (group Cd) and the second one with cadmium and chitosanoligosaccharide (0.5% solution) at the same time (group Cd+Chi). The third one which had already been injeted with chitosanoligosaccharide (0.5% Solution) aweek before (group Ch7+Cd) was used. In order to investigate the inhibitory action of chitosanoligosaccharide on liver damage, enzyme activity in serum, glutathione peroxidase (GSHPx) activity and glutathione reductase (GR) activity were relatively measured. In addition, histological observations were made to determine the morphologic injury of liver tissues. As the result of enzyme activity in serum, the activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) in chitosanoligosaccharide-injected groups Cd+Chi and Chi7+Cd was lower than in group Cd. GSH-Px activity was sharply increased in groups Cd+Chi and Chi7+Cd compared to group Cd. GR activity was conspicuously decreased in groups Cd+Chi and Chi7+Cd compared to group Cd. As the result of light microscopic observation, liver cell necrosis caused by cadmium poisoning was obseved in liver cells. The finding of group Cd+Chi and Chi7+Cd was similar total on of normal groups. As the result of electron microscopic observation, mitochondria in group Cd showed a severe swelling phenomenon, RER fragment and ribosome dropout. However, in groups Cd+Chi and Chi7+Cd, mitochondria wiht high electron density were distributed and RER forming a typical lamellae with ribosome was observed. From these results, cadmium toxicity on rat liver tissues could be lessened by chitosanoligosaccharide.

Comparison of toxicity and detoxifying enzyme activity in carp (Cyprinus carpio) treated with some synergistic pesticides (농약 상호간의 협력작용에 의한 잉어의 독성과 해독효소 활성의 비교)

  • Yang, Kwang-Rok;Shim, Jae-Han;Suh, Yong-Tack
    • Applied Biological Chemistry
    • /
    • v.35 no.5
    • /
    • pp.367-374
    • /
    • 1992
  • This study was performed to investigate effects of probable detoxifying enzyme activity and toxicity by pesticides and their combinations in the fresh water fish. Seven pesticides including IBP, isoprothiolane, cartap, ridomil, chlorothalonil, captafol and endosulfan were subjected to investigate for their acute toxicites and synergism possibilities. The $LC_{50}$ value of endosulfan was the lowest at showing 0.0079 ppm and that of metalaxyl was the highest as showing 40 ppm over. The synergism effects of relative pesticides were observed in the combinations of isoprothiolane+IBP and isoprothiolane+cartap. The changes of glycogen contents in fish liver were assayed for 5 pesticides and its highest inhibition effect of glycogen showed in IBP treated fish. The activity of probable detoxifying enzymes including carboxylesterase (CE), glutathion S-transferase (GST) and lactate dehydrogenase (LDH) were assayed in carp liver at dose of sublethal concentrations. Effects of pesticides on changes in each enzyme activities were as follows: carboxylesterase (CE) activities were the highest in IBP and gtutathion S-transferase (GST) activities were the highest in iosoprothiolane+IBP. Both activities of carboxylesterase (CE) and glutahtion S-transferase (GST) were increased by 5 chemicals. The highest LDH activity showed in isoprothiolane treated fish, while the lowest activity was observed in isoprothiolane+cartap. Sublethal exposure to cartap and isoprothiolane+cartap in carp exerted various effects on LDH activity.

  • PDF

Anti-inflammatory Efficacy and Liver Protective Activity of Pine Pollen according to Probe Sonicator Ultrasonic Disintegration Extraction Method (송화분의 초음파 파쇄 추출 방법에 따른 항염증 효능 및 간 보호 활성)

  • Kim, Ok Ju;Woo, Young Min;Jo, Eun Sol;Jo, Min Young;Li, Chun-Ri;Lee, Young-Ho;Ahn, Mee Young;Lee, Sang-Hyeon;Ha, Jong Myung;Kim, Andre
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.569-579
    • /
    • 2019
  • In this study, the effect anti-oxidant, anti-inflammatory, and liver protective activity was investigated via quick ultrasonic disintegration of pine pollen using a probe sonicator (PS) followed by the extraction with water, 70% ethanol, and 100% ethanol. The anti-inflammatory effect was studied by measuring the production of nitric oxide (NO) and cytokine in RAW264.7 cells induced with lipopolysaccharides (LPS). The cell toxicity was also checked with an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and the experiment was conducted using non-toxic $100{\mu}g/mL$. The NO inhibition rate was highest in the 70% ethanol PS group at $85.99{\pm}0.12%$. Also an excellent efficiency was obtained from the results of interlukin-1 beta ($IL-1{\beta}$) and tumor necrosis factor alpha ($TNF-{\alpha}$), which is related to inflammation-related cytokine, with the respective inhibition rates of 63 and 22%. To examine liver protective activity, HepG2 cells were treated with Taclin, and the generation of glutamic oxaloacetic transaminase (GOT) and lactate dehydrogenase (LDH) was measured in the culture solution. From GOT and LDH generation results, the inhibition rates in the 70% ethanol PS group were 28% and 13%, respectively, which was higher compared to that of using negative control group. Our results suggest that pine pollen extracted in 70% ethanol using PS may be used to develop food products that have anti-aging, anti-inflammatory, and liver protective effects.

Expression and Activity of the Na-K ATPase in Ischemic Injury of Primary Cultured Astrocytes

  • Kim, Mi Jung;Hur, Jinyoung;Ham, In-Hye;Yang, Hye Jin;Kim, Younghoon;Park, Seungjoon;Cho, Young-Wuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.4
    • /
    • pp.275-281
    • /
    • 2013
  • Astrocytes are reported to have critical functions in ischemic brain injury including protective effects against ischemia-induced neuronal dysfunction. Na-K ATPase maintains ionic gradients in astrocytes and is suggested as an indicator of ischemic injury in glial cells. Here, we examined the role of the Na-K ATPase in the pathologic process of ischemic injury of primary cultured astrocytes. Chemical ischemia was induced by sodium azide and glucose deprivation. Lactate dehydrogenase assays showed that the cytotoxic effect of chemical ischemia on astrocytes began to appear at 2 h of ischemia. The expression of Na-K ATPase ${\alpha}1$ subunit protein was increased at 2 h of chemical ischemia and was decreased at 6 h of ischemia, whereas the expression of ${\alpha}1$ subunit mRNA was not changed by chemical ischemia. Na-K ATPase activity was time-dependently decreased at 1, 3, and 6 h of chemical ischemia, whereas the enzyme activity was temporarily recovered to the control value at 2 h of chemical ischemia. Cytotoxicity at 2 h of chemical ischemia was significantly blocked by reoxygenation for 24 h following ischemia. Reoxygenation following chemical ischemia for 1 h significantly increased the activity of the Na-K ATPase, while reoxygenation following ischemia for 2 h slightly decreased the enzyme activity. These results suggest that the critical time for ischemia-induced cytotoxicity of astrocytes might be 2 h after the initiation of ischemic insult and that the increase in the expression and activity of the Na-K ATPase might play a protective role during ischemic injury of astrocytes.

Rutin alleviated lipopolysaccharide-induced damage in goat rumen epithelial cells

  • Jinshun Zhan;Zhiyong Gu;Haibo Wang;Yuhang Liu;Yanping Wu;Junhong Huo
    • Animal Bioscience
    • /
    • v.37 no.2
    • /
    • pp.303-314
    • /
    • 2024
  • Objective: Rutin, also called vitamin P, is a flavonoids from plants. Previous studies have indicated that rutin can alleviate the injury of tissues and cells by inhibiting oxidative stress and ameliorating inflammation. There is no report on the protective effects of rutin on goat rumen epithelial cells (GRECs) at present. Hence, we investigated whether rutin can alleviate lipopolysaccharide (LPS)-induced damage in GRECs. Methods: GRECs were cultured in basal medium or basal medium containing 1 ㎍/mL LPS, or 1 ㎍/mL LPS and 20 ㎍/mL rutin. Six replicates were performed for each group. After 3-h culture, the GRECs were harvested to detect the relevant parameters. Results: Rutin significantly enhanced the cell activity (p<0.05) and transepithelial electrical resistance (TEER) (p<0.01) and significantly reduced the apoptosis rate (p<0.05) of LPS-induced GRECs. Rutin significantly increased superoxide dismutase, glutathione peroxidase, and catalase activity (p<0.01) and significantly decreased lactate dehydrogenase activity and reactive oxygen species and malondialdehyde (MDA) levels in LPS-induced GRECs (p<0.01). The mRNA and protein levels of interleukin 6 (IL-6), IL-1β, and C-X-C motif chemokine ligand 8 (CXCL8) and the mRNA level of tumor necrosis factor-α (TNF-α) and chemokine C-C motif ligand 5 (CCL5) were significantly increased in LPS-induced GRECs (p<0.05 or p<0.01), while rutin supplementation significantly decreased the mRNA and protein levels of IL-6, TNF-α, and CXCL8 in LPS-induced GRECs (p<0.05 or p<0.01). The mRNA level of toll-like receptor 2 (TLR2), and the mRNA and protein levels of TLR4 and nuclear factor κB (NF-κB) was significantly improved in LPS-induced GRECs (p<0.05 or p<0.01), whereas rutin supplementation could significantly reduce the mRNA and protein levels of TLR4 (p<0.05 or p<0.01). In addition, rutin had a tendency of decreasing the protein levels of CXCL6, NF-κB, and inhibitor of nuclear factor kappa-B alpha (0.05

Protective effect of Cirsium japonicum var. maackii against oxidative stress in C6 glial cells

  • Lee, Ah Young;Kim, Min Jeong;Lee, Sanghyun;Shim, Jae Suk;Cho, Eun Ju
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.509-519
    • /
    • 2018
  • This study was investigated the anti-oxidant property and neuro-protective effect of Cirsium japonicum var. maackii (CJM) against oxidative stress in hydrogen peroxide ($H_2O_2$)-induced C6 glial cells. We measured the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, hydroxyl radical (${\cdot}OH$), and superoxide ($O_2{^-}$) radical scavenging activities of an ethanol extract and four fractions [n-Butanol, ethyl acetate (EtOAc), $CHCl_3$, and n-Hexane] from CJM. The results of this study show that the extract and all fractions from CJM had a dose-dependent DPPH radical scavenging activity. In particular, the EtOAc fraction exhibited the strongest scavenging effect with 88.23% at a concentration of $500{\mu}g/mL$. In addition, the EtOAc fraction from CJM also effectively scavenged ${\cdot}OH$ radicals and $O_2{^-}$ radicals, compared to other extract and fractions. In C6 glial cells, $H_2O_2$ markedly decreased the cell viability as well as increased lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. However, the EtOAc fraction of CJM attenuated the cellular damage from the oxidative stress by elevating the cell viability and inhibiting the LDH release and ROS over-production compared with the $H_2O_2$-treated control group. Our findings indicate that the EtOAc fraction from CJM has antioxidant effect and neuro-protective effect against oxidative stress, suggesting that it can be used as a natural antioxidant and therapeutic agent for the prevention of neurodegenerative disorders.

Effects of Bangkibokryeong-tang (Fangjifuling-tang) on the Reduction of Blood Glucose and Body Fat in High Fat Diet Induced Obese Mice (방기복령탕(防己茯嶺湯)이 비만유도생쥐의 혈당 및 체지방개선에 미치는 영향)

  • Yoo, Hyung-Jin;Lee, Jong-Ha;Lee, Soo-Kyung;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.27 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Objectives This study aimed to investigate the effect of Bangkibokryeong-tang (BBT, Fangjifuling-tang) on blood glucose and body fat in high-fat diet-induced obese mice. Methods The experimental animals were divided into five groups- normal diet-fed control (ND), high-fat diet-fed control (HFD), HFD+BBT 75, HFD+BBT 150, and HFD+olistat as a positive drug control group. Markers of obesity, such as body weight, organ weight, diet efficiency, and serum levels of total cholesterol, triglycerides, lipid content, leptin, adiponectin, glutamic oxaloacetic transaminase (GOT)/glutamic pyruvic transferase (GPT)/lactate dehydrogenase (LDH), blood glucose, and insulin, were measured. Furthermore, results of the oral glucose tolerance test and ${\alpha}-glucosidase$ inhibition activity were examined in obese mice. Results Mice treated with BBT demonstrate lower body and organ weight, and reduced weight gain and food efficiency than that in the HFD-only control group. In addition, BBT decreased lipid accumulation in the liver and the levels of enzymes such as GOT, GPT, and LDH in the serum. Furthermore, the levels of triglycerides, total cholesterol, low density lipoprotein (LDL), and leptin were decreased in the serum but the levels of high density lipoprotein (HDL) and adiponectin were increased in the BBT-treated group compared with the control group. The BBT-treated group also demonstrated decreased blood glucose and insulin concentrations induced by feeding on a high-fat diet and improved glucose tolerance. Conclusions Based on the results above, BBT may reduce body fat and hyperglycemia in HFD-induced obesity. This suggests that BBT may be clinically useful in the treatment of obesity.

Effects of the Administration of 5-aryl-2,3-dihydroimidazol [2,1-a] isoquinolines (SDZ-62434) on Kidney

  • Yi, E.Y.;Ma, Y.;Choi, W.J.;Park, J.S.;Cheon, S.H.;Lim, D.K.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.213-213
    • /
    • 1996
  • The effects of the anti-tumor agent, SDZ-y2434, on rat kidney were investigated to predict the toxicities of its derivatives and to develope less toxic derivatives. After adjusted in metabolic cages for 5 days, rats were treated SDZ-62434(acute : 25mg/kg, i.p, once and 50mg/kg, i.p., once; subacute ; 10mg/kg, i.p., daily for 7 days). Kidney weights and urine volume during the treatment were observed. Creatinine concentration, protein concentration and the activities of N-acetyl-${\beta}$-D-glucosaminidase (NAG), alanine aminopeptidase (AAP), ${\gamma}$-glutamyl transpeptidase (GGT) and lactate dehydrogenase(LDH) in 24 hr urine were also determined. The kidney weights after the acute and subacute administration didn't show any difference. Urine volume increased 5 days after the acute administration (50mg/kg) and 3 days after the subacute administration. The excretion of creatinine was increased 5 days after the acute (50mg/kg) and subacute administration. However, the protein excretion didn't show any change. NAG acivity declined 7 days after the subacute administration. AAP and GGT activites increased 3 days after the acute administration (50mg/kg) but, returned to the control value. LDH activity showed continuousely high value after the subacute administration. These results indicates that the acute administration of SDZ-62434 might damage on glomerulus and that the subacute administration might be cytotoxic to kidney cells.

  • PDF