• Title/Summary/Keyword: lactate dehydrogenase(EC. 1.1.1.27)

Search Result 22, Processing Time 0.022 seconds

Distribution and Role of Mitochondrial Lactate Dehydrogenase Isozymes in Bird and Mammals (조류 및 포유류 내 미토콘드리아 젖산탈수소효소 동위효소들의 분포와 역할)

  • Cho, Sung Kyu;Yum, Jung Joo
    • Journal of Life Science
    • /
    • v.27 no.5
    • /
    • pp.530-535
    • /
    • 2017
  • Mitochondria were isolated from bird and mammals. The activity of monoamine oxidase (EC 1.4.3.4) was then measured to identify mitochondrial isolation. Lactate dehydrogenase (EC 1.1.1.27, lactate dehydrogenase, LDH) isozymes in mitochondrial fractions were analyzed by biochemical and immunochemical methods. The activity of mitochondrial LDH was lower in mammals than in bird. Therefore, the role of mitochondrial LDH seems to be more important in bird than in mammals. The concentration of protein in all tissues of bird and mammals was less in the mitochondria than in the cytosol. In the cytosol of mice and golden hamsters, testis-specific LDH $C_4$ isozyme was expressed in testis in addition to the LDH $A_4$, $A_3B$, $A_2B_2$, $AB_3$, and $B_4$ isozymes. A single LDH AB hybrid isozyme was expressed in the chicken mitochondria. In mammals, mitochondrial LDH isozymes were differed according to tissues. LDH $A_4$ and testis-specific LDH $C_4$ isozymes were expressed in the mitochondria of mice. The mitochondrial testis-specific LDH $C_4$ isozyme was expressed only in the mice. In the golden hamster mitochondria, the LDH $B_4$ isozyme functioned as a lactate oxidase. As our results show, the mitochondrial LDH seemed to be playing the different role in the bird and mammals in relation with their metabolic conditions and habitats.

Effect of Mitochondrial Inhibitor on Lactate Dehydrogenase of Mesocricetus auratus and Bos taurus coreanae (햄스터와 소의 젖산탈수소효소에 대한 미토콘드리아 inhibitor의 영향)

  • Cho Sung Kyu;Lee Sang Hak;Yum Jung Joo
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.100-105
    • /
    • 2005
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) inhibitors were isolated from the LDH-free crude mitochondrial fraction of skeletal muscle in Syrian hamster (Mesocricetus auratus) and Korean native cattle (Bos taurus coreanae). The LDH inhibitor in skeletal muscle of M. auratus was successfully isolated by the treatment with 175 mM NaCl and ultrasonic. The LDH inhibitor in skeletal muscle of B. taurus coreanae was highly stable to heat and LDH fu isozyme was largely inhibited by the LDH inhibitor. The molecular weight of inhibitor was 22 kDa. Inhibitor played an important role in the binding of LDH with the mitochondria in tissues of skeletal muscle, kidney and liver except heart.

Kinetic Properties of Lactate Dehydrogenase in Tissues from Rana catesbeiana (황소개구리(Rana catesbeiana) 조직의 젖산탈수소효소의 역학적 특성)

  • Yum, Jung Joo;Ha, Eun Sung
    • Journal of Life Science
    • /
    • v.24 no.2
    • /
    • pp.118-127
    • /
    • 2014
  • The kinetic properties and isozyme expression of lactate dehydrogenase (EC 1.1.1.27; LDH) in tissues from Rana catesbeiana I and II collected from February (I) and August (II) were studied. LDH activities, A4 isozyme, and LDH/citrate synthase (EC 4.1.3.7; CS) were high in skeletal muscle from R. catesbeiana I, and LDH $B_4$ isozyme increased in several tissues of R. catesbeiana II. In particular, LDH activities were high in heart and brain tissues from R. catesbeiana II. LDH eye-specific C isozyme, detected by native polyacrylamide gel electrophoresis after immunoprecipitation, was expressed in eye tissue and was more similar to the $B_4$ than $A_4$ isozyme. LDH $A_4$ isozyme was purified by oxamate-linked affinity chromatography, and the molecular weight of subunit A was 32.0 kDa. In R. catesbeiana II, levels of $Km^{PYU}$, $Vmax^{LAC}$, and tolerance to lactate of LDH were high in all tissues, and $Vmax^{PYU}$ of LDH in heart and brain tissue was highly detected. Purified $A_4$ isozyme and LDH in eye tissue were highly tolerate compared to others. The $Km^{LAC}$ value was highly measured compared to $Km^{PYU}$. The degree of inhibition by 10 mM of pyruvate on LDH activities in tissues from R. catesbeiana I and II was more pronounced as the ratio of subunit B increased. As a result, characteristic expression of LDH eye-specific C was found in R. catesbeiana. Anaerobic metabolism seemed to predominate as the LDH of skeletal muscle from I showed higher activity. It also appeared that R. catesbeiana II adapted well to incremental increases in LDH B, becoming tolerant to the lactate of LDH in tissues.

Redistribution of Lactate Dehydrogenase Isozymes and Morphology of Tissues in Mus musculus after Irradiation (방사선 조사 후 생쥐(Mus musculus)조직의 형태와 젖산탈수소효소 동위효소의 재분포)

  • 박현도;염정주
    • Korean Journal of Environmental Biology
    • /
    • v.17 no.3
    • /
    • pp.263-270
    • /
    • 1999
  • In order to identify the morphological changes of tissues in mouse after irradiation. We have observed the redistribution of LDH isozymes and the morphological changes of skeletal muscle, heart, kidney, liver and testis in mouse according to variation amount with the time after the 1 Gray and 3 Gray irradiation each. As a result of H-E (hematoxylin-eosin) stain, the apoptotic bodies were more easily observed in the liver than the other tissues and the quantity of the apoptotic bodies was proportionated to radiation amount. The number of apoptotic bodies was shown the highest at 1 day in most tissues and at 7 day in testis after irradiation. TUNEL (terminal deoxyribonucleodtidyl transferase-mediated dUTP-digoxigenin nick end labeling) staining was shown the same results as H-E staining. After the irradiation, the protein content was reduced in tissues except kidney. And protein content was reduced in all tissues at the initial period of 2 hours after 3 Gy irradiation. But it increased at 7 days after irradiation. LDH (EC 1.1.1.27, lactate dehydrogenase) activity was increased mostly in tissues at the early stage after 1 Gy irradiation. The maximum activity was detected earlier stage after 1 Gy irradiation than 3 Gy irradiation. The activity of LDH $A_4$ isozyme was decreased in the skeletal muscle, heart, kidney, and testis. The activity of $B_4$ and $A_2$$B_2$ sozyme was increased in the skeletal muscle and heart, and the activity of heterotetramer isozyme was increased in kidney The activity of $A_4$ isozyme in liver was detected high level and the activity of isozyme including subunit C elevated in testis. Therefore, LDH isozyme seems to play a role of lactate oxidase in most tissues except liver after irradiation. These data support that LDH isozyme is predomintly involved in the aerobic metabolism.

  • PDF

Lactate Dehydrogenase Isozyme of Hypoxia Tropical Catfish(Pangasius Polyuranodon, Hypostomus Plecostomus) (저산소 환경에 서식하는 열대성 catfish (Pangasius Polyuranodon, Hypostomus Ple-Costomus)의 젖산탈수소효소 동위효소)

  • 조성규;염정주
    • Journal of Life Science
    • /
    • v.14 no.4
    • /
    • pp.702-707
    • /
    • 2004
  • In native-polyacrylamide gel electrophoresis of Pangasius polyuranodon, the lactate dehydrogenase (EC 1.1.1.27, LDH) $A_4$, $A_3$B, $A_2$$B_2$,$AB_3$ and $B_4$ isozymes were expressed in various tissues. The LDH $A_4$ and liver-specific $C_4$ isozymes were expressed in the tissues of Hypostomus Plecostomus. The bands of LDH in skeletal muscle, heart and eye tissues were not detected while one band was detected in kidney and liver, and four bands were detected in brain. The detected one band in liver was identified as alcohol dehydrogenase and an anodal band of skeletal muscle was identified as nothing dehydrogenase. The LDH in skeletal muscle, heart and eye might function as pyruvate reductase. The degree of inhibitions of LDH in skeletal muscle and heart of P. polyuranodon by 10 mM pyruvate were measured 57.6% and 73.8%, respectively. However, those of LDH in tissues of H. plecostomus were measured 52.7-61.8% so tissue specificity did not appear. Therefore, H. ple-costomus might be more acclimated to hypoxic environment by anaerobic metabolism of LDH iso-zymes than P. polyuranodon.

Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Fish at Starved State (기아상태에서 Ldh-C가 발현된 어류 조직의 젖산탈수소효소의 대사)

  • Yum, Jung Joo;Kim, Gyu Dong
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.155-163
    • /
    • 2016
  • Metabolism of lactate dehydrogenase (EC 1.1.1.27, LDH) was studied to identify the function of LDH-C. Tissues of LDH liver-specific Ldh-C expressed Carassius auratus and eye-specific Ldh-C expressed Lepomis macrochirus after starvation were studied. LDH activity in liver tissue from C. auratus was increased after starvation. And LDH specific activity (units/mg) and LDH/CS were increased in tissues. It means the anaerobic metabolism was taking place in C. auratus after starvation. LDH B4 isozyme was decreased in skeletal muscle and increased in heart tissue. LDH C4 isozymes those showed in eye and brain tissues were identified as liver-specific C4 isozymes and disappeared after starvation. And C hybrid in eye, A4 isozyme in brain, and both C hybrid and C4 isozyme in liver tissue were increased, respectively. In L. macrochirus, the level of variation of LDH activities was low but greatly increased especially in eye tissue and LDH A4 and AC hybrid were increased in brain tissue. The LDH activities in tissues from C. auratus and L. macrochirus remained 30.30-18.64% and 25-18.75%, respectively, as a result of the inhibition by 10 mM of pyruvate. The KmPYR values of LDH in C. auratus were increased. As a result, LDH liver-specific C4 isozyme was expressed in liver, brain and eye tissues during starvation. It seems metabolism of lactate was predominant in brain tissue. After starvation, the liver-specific LDH-C was affected more than eye-specific LDH-C.

Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Mice (Mus musculus) in a Starvation State (기아상태에서 Ldh-C가 발현된 생쥐(Mus musculus) 조직의 젖산탈수소효소의 대사)

  • Yum, Jung Joo;Kim, Gyu Dong
    • Journal of Life Science
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2018
  • To confirm the function of lactate dehydrogenase (LDH) (EC 1.1.1.27, LDH), its metabolism was studied by activity, kinetics, and isozyme analysis in tissues of Ldh testis-specific C expressing mice (Mus musculus) maintained in a state of starvation for 48 hr and 96 hr. In skeletal muscle, liver, and eye tissues, LDH and LDH $A_4$ activity increased and anaerobic metabolism predominated. While LDH activity in the heart and kidney tissues decreased, LDH $B_4$ activity increased and aerobic metabolism predominated, producing pyruvic acid. In the testis tissue, LDH $C_4$ activity decreased. In the brain tissue, LDH activity increased, but the isozyme change was small and the amount of pyruvic acid decreased. $K{_m}^{PYR}$ increased in tissues other than kidney tissue, and the affinity for pyruvic acid decreased. Consequently, in Ldh-A and B-expressing tissues, the activities of isozymes with higher concentrations increased. However, in Ldh-A, B, and C-expressing tissue, $C_4$ decreased and the function of the tissue also decreased. In particular, LDH in brain tissue played a role as a pyruvate reductase. Therefore, this process might be the mechanism for producing energy in the state of starvation.

Purification and Characterization of Eye-Specific Lactate Dehydrogenase C4 Isozyme in Greenling (Hexagrammos otakii) (쥐노래미 eye-specific LDH C4 동위효소의 정제 및 특성)

  • Cho, Sung-Kyu;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.21 no.11
    • /
    • pp.1565-1572
    • /
    • 2011
  • Eye-specific lactate dehydrogenase (EC 1.1.1.27, LDH) $C_4$ isozyme in the eyes of greenlings (Hexagrammos otakii) was successfully purified by affinity chromatography and continuous-elution electrophoresis. The molecular weight of the purified eye-specific LDH $C_4$ isozyme was 154.8 kDa, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Optimal pH for enzymatic reaction of the eye-specific LDH $C_4$ isozyme was pH 8.5. $K^{PYR}_m$ value of the purified eye-specific LDH $C_4$ isozyme was $1.88{\times}10^{-5}$ M using pyruvate as a substrate. These results indicate that we must consider pH when measuring eye-specific LDH $C_4$ isozyme activity. The eye-specific LDH $C_4$ isozyme had a higher binding affinity for the substrate as a pyruvate than LDH A4 isozyme. Antibodies produced against the purified eye-specific LDH $C_4$ isozyme may be used in the diagnosis of several human diseases and in comparative physiological studies of fishes.

Changes of Activities and Isozymes of Lactate Dehydrogenase in Coreoperca herzi and Pseudogobio esocinus Acclimated to Rapid Increase of Dissolved Oxygen (급격한 용존산소량 증가에 순응한 꺽지(Coreoperca herzi)와 모래무지(Pseudogobioesocinus) 젖산탈수소효소 활성과 동위효소의 변화)

  • Cho Sung Kyu;Yum Jung Joo
    • Journal of Life Science
    • /
    • v.15 no.1 s.68
    • /
    • pp.71-79
    • /
    • 2005
  • The metabolism of lactate dehydrogenase (EC 1.1.1.27, LDH) and $C_4$ isozyme were studied in tissues of Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen (DO). In C. herzi the LDH activity was changed $35-39\%$ in brain and liver tissues, and within $20\%$ in other tissues. The $B_4$ isozyme was increased and isozyme containing subunit C was decreased in muscle tissue. The $B_4$ isozyme was increased in heart and kidney. In P. esocinus, the LDH activity in liver tissues was largely increased to $150\%$ for 30 minute and $70\%$ in other tissues. The $A_4$ isozyme was increased in muscle and $B_4$ isozyme was increased in other tissues. Especially, the metabolism of liver tissue in P. esocinus was regulated by increasing liver-specific $C_4$ and decreasing $A_4$ isozyme. But the metabolism of eye tissue in C. herzi was regulated by decreasing LDH activity and eye-specific $C_4$ isozyme. The LDH activity and LDH isozyme in P. esocinus were largely increased than C. herzi acclimated to rapid increase of DO. And eye-specific $C_4$ and liver-specific $C_4$ isozymes played role as lactate oxidase. Therefore, the response of species acclimated to rapid increase of DO seems to be variable, perhaps due to prior exposure to environmental conditions.

Purification and Characterization of Lactate Dehydrogenase A4 Isozyme in Mandrin Fish (Siniperca scherzeri) (쏘가리(Siniperca scherzeri) 젖산탈수소효소 A4 동위효소의 정제 및 특성)

  • Cho, Sung-Kyu;Ku, Bo-Ra;An, Hyo-Jung;Park, Eun-Mi;Park, Seon-Young;Kim, Jae-Bum;Yum, Jung-Joo
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.256-263
    • /
    • 2009
  • The lactate dehydrogenase (EC 1.1.1.27, LDH) $A_4$ isozyme in skeletal muscle of mandrin fish (Siniperca scherzeri) was successfully purified by affinity chromatography and ultrafiltration. The molecular weight of the purified LDH $A_4$ isozyme was 140.4 kDa and its isoelectric point (pI) was 7.0. Optimal pH for enzymatic reaction was 7.5. ${K_m}^{PYR}$ and $V_{max}$ value of the purified LDH $A_4$ isozyme were $4.86{\times}10^{-5}$ M and 13.31 mM/min using pyruvate as a substrate, respectively. These kinetic properties of the purified LDH $A_4$ isozyme supported the fact that the mandrin fish was a warm-adapted species. The antibody against the purified LDH $A_4$ isozyme may be used in the metabolic physiological studies of ectothermic vertebrates and in the diagnosis of several human diseases.