DOI QR코드

DOI QR Code

Metabolism of Lactate Dehydrogenase in Tissues from Ldh-C Expressed Mice (Mus musculus) in a Starvation State

기아상태에서 Ldh-C가 발현된 생쥐(Mus musculus) 조직의 젖산탈수소효소의 대사

  • Yum, Jung Joo (Department of Life Science, Cheongju University) ;
  • Kim, Gyu Dong (Department of Life Science, Cheongju University)
  • 염정주 (청주대학교 생명과학과) ;
  • 김규동 (청주대학교 생명과학과)
  • Received : 2017.08.31
  • Accepted : 2018.01.16
  • Published : 2018.01.30

Abstract

To confirm the function of lactate dehydrogenase (LDH) (EC 1.1.1.27, LDH), its metabolism was studied by activity, kinetics, and isozyme analysis in tissues of Ldh testis-specific C expressing mice (Mus musculus) maintained in a state of starvation for 48 hr and 96 hr. In skeletal muscle, liver, and eye tissues, LDH and LDH $A_4$ activity increased and anaerobic metabolism predominated. While LDH activity in the heart and kidney tissues decreased, LDH $B_4$ activity increased and aerobic metabolism predominated, producing pyruvic acid. In the testis tissue, LDH $C_4$ activity decreased. In the brain tissue, LDH activity increased, but the isozyme change was small and the amount of pyruvic acid decreased. $K{_m}^{PYR}$ increased in tissues other than kidney tissue, and the affinity for pyruvic acid decreased. Consequently, in Ldh-A and B-expressing tissues, the activities of isozymes with higher concentrations increased. However, in Ldh-A, B, and C-expressing tissue, $C_4$ decreased and the function of the tissue also decreased. In particular, LDH in brain tissue played a role as a pyruvate reductase. Therefore, this process might be the mechanism for producing energy in the state of starvation.

젖산탈수소효소(Lactate dehydrogenase, EC 1.1.1.27, LDH)의 기능을 확인하기 위해서 Ldh testis-specific C가 발현된 생쥐(Mus musculus)를 48 hr과 96 hr 기아상태로 유지시킨 후 조직들의 LDH 대사를 LDH 활성, 역학 및 동위효소를 분석하여 연구하였다. 골격근, 간 및 눈조직에서 LDH와 LDH $A_4$활성이 증가되어 혐기적 대사가 우세하였고, 심장과 신장조직의 LDH 활성은 감소되지만 LDH $B_4$ 활성이 증가되어 피루브산을 생성하는 호기적 대사가 우세하였다. 하지만 정소조직에서는 LDH $C_4$가 감소되었고, 뇌조직의 LDH 활성은 조직 중에서 가장 많이 증가되었지만 동위효소의 변화가 작고 피루브산의 양이 감소되었다. 신장조직을 제외한 조직들에서 $K{_m}^{PYR}$이 증가되어 피루브산에 대한 친화력이 감소된 것으로 확인되었다. 실험결과 Ldh-A, B가 발현된 조직에서는 상대 농도가 큰 동위효소의 활성이 증가되었으나 Ldh-A, B, C가 발현된 정소조직은 LDH $C_4$가 감소되어 기능이 저하되었으며 특히 뇌조직에서 LDH는 피루브산 환원효소로서 역할을 하는 것으로 확인되었다. 따라서 이 과정은 기아상태에서 에너지를 생성하는 기작이 될 수 있는 것으로 사료된다.

Keywords

References

  1. Baumgart, E., Fahimi, H. D., Stich, A. and Volkl, A. 1996. L-Lactate dehydrogenase A4-and A3B isoforms are bona fide peroxisomal enzymes in rat liver evidence for involve- ment in intraperoxisomal NADH reoxidation. J. Biol. Chem. 271, 3846-3855. https://doi.org/10.1074/jbc.271.7.3846
  2. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  3. Cho, S. K. and Yum, J. J. 2005. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi and Pseudogobio esocinus acclimated to rapid increase of dissolved oxygen. J. Life Sci. 15, 71-79. https://doi.org/10.5352/JLS.2005.15.1.071
  4. Cho, S. K., Park, S. Y. and Yum, J. J. 1993. Purification and immunochemistry of lactate dehydrogenase in Lampetra japonica. Kor. J. Zool. 36, 505-513.
  5. Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121, 404-427.
  6. de Almeida-Val, V. M. F. and Val, A. L. 1993. Evolutionary trends of LDH isozymes in fishes. Comp. Biochem. Physiol. B. 105, 21-28.
  7. Fang, R., Zheng, X. and Zhang, M. 2016. Ethyl pyruvate alleviates early brain injury following subarachnoid hemorrhage in rats. Acta Neurochir. 158, 1069-1076. https://doi.org/10.1007/s00701-016-2795-3
  8. Furne, M., Morales, A. E., Trenzado, C. E., Garcia-Gallego, M., Hidalgo, M. C., Domezain, A. and Rus, A. S. 2012. The metabolic effects of prolonged starvation and refeeding in sturgeon and rainbow trout. J. Comp. Physiol. B. 182, 63-76. https://doi.org/10.1007/s00360-011-0596-9
  9. Goldberg, E., Eddy, E. M., Duan, C. and Odet, F. 2010. LDH C: The ultimate testis‐specific gene. J. Androl. 31, 86-94. https://doi.org/10.2164/jandrol.109.008367
  10. Ha, E. S. 2017. Characterization of lactate dehydrogenase in methimazole-induced hypothyroid rats (Rattus norvegicus). MS. dissertation, Cheongju Univ., Cheongju, Korea.
  11. Hashimoto, T., Cook, W. S., Qi, C., Yeldandi, A. V., Reddy, J. K. and Rao, M. S. 2000, Defect in peroxisome proliferator- activated receptor alpha-inducible fatty acid oxidation determines the severity of hepatic steatosis in response to fasting. J. Biol. Chem. 275, 28918-28928. https://doi.org/10.1074/jbc.M910350199
  12. Kim, G. D. 2016. Expression of lactate dehydrogenase and monocarboxylate transporters (MCT) and antioxidant function. MS. dissertation, Cheongju Univ., Cheongju, Korea.
  13. Kim, J. B., Cho, S. K. and Yum, J. J. 2004. Changes of activities and isozymes of lactate dehydrogenase in Coreoperca herzi acclimated to acute increase of temperature for shortterm period. J. Ind. Sci. 22, 43-50.
  14. Kim, J., Lee, Y. M., Kim, C. S., Sohn, E., Jo, K., Shin, S. D., and Kim, J. S. 2013. Ethyl pyruvate prevents methylglyoxal- induced retinal vascular injury in rats. J. Diabetes Res. 2013, 460820.
  15. Konig, B., Fischer, S., Schlotte, S., Wen, G. and Eder, K. 2010. Monocarboxylate transporter 1 and CD 147 are up-regulated by natural and synthetic peroxisome proliferator activated receptor alpha agonists in livers of rodents and pigs. Mol. Nutr. Food Res. 54, 1248-1256. https://doi.org/10.1002/mnfr.200900432
  16. Laepinsh, E., Makrecka, M., Kuka, J., Makarova, E., Vilskersts, R., Cirule, H., Sevostjanovs, E., Grinberga, S., Pugovics, O. and Dambrova, M. 2014. The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism 63, 127-136. https://doi.org/10.1016/j.metabol.2013.09.014
  17. Markert, C. L., Shaklee, J. B. and Whitt, G. S. 1975. Evolution of a gene. Multiple genes for LDH isozymes provide a model of the evolution of gene structure, function and regulation. Science 189, 102-114. https://doi.org/10.1126/science.1138367
  18. Matsuyama, S., Ohkura, S., Iwata, K., Uenoyama, Y., Tsukamura, H., Maeda, K. and Kimura, K. 2009. Food deprivation induces monocarboxylate transporter 2 expression in the brainstem of female rat. J. Reprod. Dev. 55, 256-261. https://doi.org/10.1262/jrd.20214
  19. Moro, N., Ghavim, S. S., Harris, N. G., Hovda, D. A. and Sutton, R. L. 2016. Pyruvate treatment attenuates cerebral metabolic depression and neuronal loss after experimental traumatic brain injury. Brain Res. 1642, 270-277. https://doi.org/10.1016/j.brainres.2016.04.005
  20. Morze, C., Chang, G. Y., Larson, P. E. Z., Shang, H., Allu, P. K. R., Bok, R. A., Crae, J. C., Olson, M. P., Tan, C. T., Marco-Rius, I., Nelson, S. J., Kurhanewicz, J., Pearce, D. and Vigneron, D. B. 2016. Detection of localized changes in the metabolism of hyperpolarized gluconeogenic precursors 13C-lactate and 13C-pyruvate in kidney and liver. Magn. Reson. Med. 77, 1429-1437.
  21. Mukai, C. and Okuno, M. 2004. Glycolysis plays a major role for adenosine triphosphate supplementation in mouse sperm flagella movement. Biol. Reprod. 71, 540-547. https://doi.org/10.1095/biolreprod.103.026054
  22. Nalbandian, M. and Takeda, M. 2016. Lactate as a signaling molecule that regulates exercise-induced adaptations. Biology 5, 38. https://doi.org/10.3390/biology5040038
  23. O'Brien, J., Kla, K. M., Hopkins, I. B., Malecki, E. A. and McKenna, M. C. 2007. Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem. Res. 32, 597-607. https://doi.org/10.1007/s11064-006-9132-9
  24. Odet, F., Duan, C., Willis, W. D., Goulding, E. H., Kung, A., Eddy, E. M. and Goldberg, E. 2008. Expression of the gene for mouse lactate dehydrogenase C (Ldhc) is required for male fertility. Biol. Reprod. 79, 26-34. https://doi.org/10.1095/biolreprod.108.068353
  25. Oishi, Y., Tsukamoto, H., Yokokawa, T., Hirotsu, K., Shimazu, M., Uchida, K., Tomi, H., Higashida, K., Iwanaka, N. and Hashimoto, T. 2015. Mixed lactate and caffeine compound increases satellite cell activity and anabolic signals for musle hypertrophy. J. Appl. Physiol. 118, 742-749. https://doi.org/10.1152/japplphysiol.00054.2014
  26. Park, S. Y. and Yum, J. J. 1993. Lactate dehydrogenase isozymes of Cypriniform and Perciform fishes: Expression of the Ldh-C gene. J. Ind. Sci. 11, 265-277.
  27. Park, E. M. and Yum, J. J. 2010. Purification and characterization of lactate dehydrogenase isozymes in Channa argus. J. Life Sci. 20, 260-268. https://doi.org/10.5352/JLS.2010.20.2.260
  28. Park, E. M. and Yum, J. J. 2011. Activities of lactate dehydrogenase and ratios of lactate dehydrogenase/citrate synthase in tissue of Odontobutis interrupta. J. Ind. Sci. 28, 15-24.
  29. Quistorff, B. and Grunnet, N. 2011. High brain lactate is not caused by a shift in the lactate dehydrogenase A/B ratio. Proc. Natl. Acad. Sci. USA 108, E21. https://doi.org/10.1073/pnas.1017750108
  30. Scanlan, M. J., Simpson, A. J. and Old, L. J. 2004. The cancer/ testis genes: review, standardization, and commentary. Cancer Immun. 4, 1.
  31. Schutkowski, A., Wege, N., Stangl, G. I. and Konig, B., 2014. Tissue-specific expression of monocarboxylate transporters during fasting in mice. PLoS ONE 9, E112118. https://doi.org/10.1371/journal.pone.0112118
  32. Sensabaugh, G. F. and Kaplan, N. O. 1972. A lactate dehydrogenase specific to the liver of gadoid fish. J. Biol. Chem. 247, 585-593.
  33. Suzuki, A., Stern, S. A., Bozdagi, O., Huntley, G. W., Walker, R. H., Magistretti, P. J. and Alberini, C. M. 2011. Astrocyteneuron lactate transport is required for long-term memory formation. Cell 144, 810-823. https://doi.org/10.1016/j.cell.2011.02.018
  34. Teng, X., Emmett, M. J., Lazar, M. A., Goldberg, E. and Rabinowitz, J. D. 2016. Lactate dehydrogenase C produced S-2-hydroxyglutarate in mouse testis. ACS Chem. Biol. 11, 2420-2427. https://doi.org/10.1021/acschembio.6b00290
  35. Wang, Y., Wei, L., Wei, D., Li, X., Xu, L. and Wei, L. 2015. Testis-specific lactate dehydrogenase (LDH-C4) in skeletal muscle enhances a pika's sprint-running capacity in hypoxic environment. Int. J. Environ. Res. 12, 9218-9236.
  36. Wang, X., Perez, E., Liu, R., Yan, L. J., Mallet, R. T. and Yang, S. H. 2007. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 1132, 1-9. https://doi.org/10.1016/j.brainres.2006.11.032
  37. Whitt, G. S. 1970. Developmental genetics of the lactate dehydrogenase isozymes of fish. J. Exp. Zool. 175, 1-35. https://doi.org/10.1002/jez.1401750102
  38. Xu, J., Xiao, G., Trujillo, C., Chang, V., Blanco, L., Joseph, S. B., Bassilian, S., Saad, M. F., Tontono, P., Lee, W. N. and Karland, I. J. 2002. Peroxisome proliferator-activated receptor alpha (PPARalpha) influences substrate utilization for hepatic glucose production. J. Biol. Chem. 277, 50237- 50244. https://doi.org/10.1074/jbc.M201208200
  39. Yang, J., Ruchti, E., Petit, J. M., Jourdain, P., Grenningioh, G., Allaman, I. and Magistretti, P. J. 2014. Lactate promotes plasticity gene expression by potentiating NMDA signaling in neurons. Proc. Natl. Acad. Sci. USA 111, 12228-12233. https://doi.org/10.1073/pnas.1322912111
  40. Yeon, J. H. 2011. Charaterization of lactate dehydrogenase and expression of monocarboxylate transporters (MCT) 1, 2, 4 in liver from Carassius auratus. MS. dissertation, Cheongju Univ., Cheongju, Korea.
  41. Yum, J. J. 2008. Characterization of lactate dehydrogenase in Acanthogobius hasta. J. Life Sci. 18, 264-272. https://doi.org/10.5352/JLS.2008.18.2.264
  42. Yum, J. J. and Ku, B. R. 2012. Biochemical properties of lactate dehydrogenase eye-specific C4 isozyme: Lepomis macrochirus and Micropterus salmoides. J. Life Sci. 22, 209-219. https://doi.org/10.5352/JLS.2012.22.2.209
  43. Yum, J. J. and Kim, G. D. 2016. Metabolism of lactate de hydrogenase in tissues from Ldh-C expressed fish at starved state. J. Life Sci. 26, 101-109. https://doi.org/10.5352/JLS.2016.26.1.101
  44. Zilberter, Y., Zilberter, T. and Begestovski, P. 2010. Neuronal activity in vitro and the in vivo reality: The role of energy homeostatsis. Trends Pharmacol. Sci. 31, 394-401. https://doi.org/10.1016/j.tips.2010.06.005