• Title/Summary/Keyword: laccases

Search Result 38, Processing Time 0.024 seconds

Enzymatic Dyeing for Wool (효소를 이용한 wool의 염색)

  • Hoon Sik Shin;Byong Dae Jeon;Artur Cavaco-Paulo;Mitsuo Ueda
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2001.10a
    • /
    • pp.59-62
    • /
    • 2001
  • Oxydoreductase enzymes such as laccases (benzenediol: oxygen oxidoreductase, EC 1.10.3.2) and horseradish peroxidase (donor: hydrogen peroxide oxidoreductase, HRP, EC 1.11.1.7) can provide novel ways for wool coloration in the face of actual state of the art of these enzymes. HRP has been reported as a very useful enzyme for the synthesis of phenolic polymers2). (omitted)

  • PDF

Molecular Cloning and Expression of a Laccase from Ganoderma lucidum, and Its Antioxidative Properties

  • Joo, Seong Soo;Ryu, In Wang;Park, Ji-Kook;Yoo, Yeong Min;Lee, Dong-Hyun;Hwang, Kwang Woo;Choi, Hyoung-Tae;Lim, Chang-Jin;Lee, Do Ik;Kim, Kyunghoon
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.112-118
    • /
    • 2008
  • Laccases are multicopper-containing oxidases that catalyze the oxidation of many aromatic compounds with concomitant reduction of oxygen to water. Interest in this enzyme has arisen in many fields of industry, including detoxification, wine stabilization, paper processing, and enzymatic conversion of chemical intermediates. In this study, we cloned a laccase gene (GLlac1) from the white-rot fungus Ganoderma lucidum. The cloned gene consists of 4,357 bp, with its coding region interrupted by nine introns, and the upstream region has putative CAAT and TATA boxes as well as several metal responsive elements (MREs). We also cloned a full-length cDNA of GLlac1, which contains an uninterrupted open reading frame (ORF) of 1,560 bp coding for 520 amino acids with a putative 21-residue signal sequence. The DNA and deduced amino acid sequences of GLlac1 were similar but not identical to those of other fungal laccases. GLlac1 was released from the cells when expressed in P. pastoris, and had high laccase activity. In addition, GLlac1 conferred antioxidative protection from protein degradation, and thus may be useful in bio-medical applications.

Selection of High Laccase-Producing Coriolopsis gallica Strain T906: Mutation Breeding, Strain Characterization, and Features of the Extracellular Laccases

  • Xu, Xiaoli;Feng, Lei;Han, Zhenya;Luo, Sishi;Wu, Ai'min;Xie, Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.9
    • /
    • pp.1570-1578
    • /
    • 2016
  • Commercial application of laccase is often hampered by insufficient enzyme stocks, with very low yields obtained from natural sources. This study aimed to improve laccase production by mutation of a Coriolopsis gallica strain and to determine the biological properties of the mutant. The high-yield laccase strain C. gallica TCK was treated with N-methyl-N-nitro-N-nitrosoguanidine and ultraviolet light. Among the mutants isolated, T906 was found to be a high-production strain of laccases. The mutant strain T906 was stabilized via dozens of passages, and the selected ones were further processed for optimization of metallic ion, inducers, and nutritional requirements, which resulted in the optimized liquid fermentation medium MF9. The incubation temperature and pH were optimized to be 30℃ and 4.5, respectively. The mutant strain T906 showed 3-times higher laccase activity than the original strain TCK under optimized conditions, and the maximum laccase production (303 U/ml) was accomplished after 13 days. The extracellular laccase isoenzyme 1 was purified and characterized from the two strains, respectively, and their cDNA sequence was determined. Of note, the laccase isoenzyme 1 transcription levels were overtly increased in T906 mycelia compared with values obtained for strain TCK. These findings provide a basis for C. gallica modification for the production of high laccase amounts.

Multiple Tolerances and Dye Decolorization Ability of a Novel Laccase Identified from Staphylococcus Haemolyticus

  • Li, Xingxing;Liu, Dongliang;Wu, Zhaowei;Li, Dan;Cai, Yifei;Lu, Yao;Zhao, Xin;Xue, Huping
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.615-621
    • /
    • 2020
  • Laccases are multicopper oxidases with important industrial value. In the study, a novel laccase gene (mco) in a Staphylococcus haemolyticus isolate is identified and heterologously expressed in Escherichia coli. Mco shares less than 40% of amino acid sequence identities with the other characterized laccases, exhibiting the maximal activity at pH 4.0 and 60℃ with 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) as a substrate. Additionally, the Mco is tolerant to a wide range of pH, heavy metal ions and many organic solvents, and it has a high decolorization capability toward textile dyes in the absence of redox mediators. The characteristics of the Mco make this laccase potentially useful for industrial applications such as textile finishing. Based on BLASTN results, mco is found to be widely distributed in both the bacterial genome and bacterial plasmids. Its potential role in oxidative defense ability of staphylococci may contribute to the bacterial colonization and survival.

Differential Expression of Laccase Genes in Pleurotus ostreatus and Biochemical Characterization of Laccase Isozymes Produced in Pichia pastoris

  • Park, Minsa;Kim, Minseek;Kim, Sinil;Ha, Byeongsuk;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.43 no.3
    • /
    • pp.280-287
    • /
    • 2015
  • In this study, transcriptome analysis of twelve laccase genes in Pleurotus ostreatus revealed that their expression was differentially regulated at different developmental stages. Lacc5 and Lacc12 were specifically expressed in fruiting bodies and primordia, respectively, whereas Lacc6 was expressed at all developmental stages. Lacc1 and Lacc3 were specific to the mycelial stage in solid medium. In order to investigate their biochemical characteristics, these laccases were heterologously expressed in Pichia pastoris using the pPICHOLI-2 expression vector. Expression of the laccases was facilitated by intermittent addition of methanol as an inducer and sole carbon source, in order to reduce the toxic effects associated with high methanol concentration. The highest expression was observed when the recombinant yeast cells were grown for 5 days at $15^{\circ}C$ with intermittent addition of 1% methanol at a 12-hr interval. Investigation of enzyme kinetics using 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) as a substrate revealed that the primordium-specific laccase Lacc12 was 5.4-fold less active than Lacc6 at low substrate concentration with respect to ABTS oxidation activity. The optimal pH and temperature of Lacc12 were 0.5 pH units and $5^{\circ}C$higher than those of Lacc6. Lacc12 showed maximal activity at pH 3.5 and $50^{\circ}C$, which may reflect the physiological conditions at the primordiation stage.

Heterologous Expression and Characterization of a Laccase from Laccaria bicolor in Pichia pastoris and Arabidopsis thaliana

  • Wang, Bo;Yan, Ying;Xu, Jing;Fu, Xiaoyan;Han, Hongjuan;Gao, Jianjie;Li, Zhenjun;Wang, Lijuan;Tian, Yongsheng;Peng, Rihe;Yao, Quanhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.12
    • /
    • pp.2057-2063
    • /
    • 2018
  • Laccases can oxidize a variety of phenolic and non-phenolic substrates including synthetic dyes. In this research, a laccase gene Lcc9 from Laccaria bicolor was chemically synthesized and optimized to heterogeneous expression in Pichia pastoris and Arabidopsis thaliana. The properties of recombinant laccase expressed by P. pastoris were investigated. The laccase activity was optimal at 3.6 pH and $40^{\circ}C$. It exhibited $K_m$ and $V_{max}$ values of $0.565mmol\;l^{-1}$ and $1.51{\mu}mol\;l^{-1}\;min^{-1}$ for ABTS respectively. As compared with untransformed control plants, the laccase activity in crude extracts of transgenic lines exhibited a 5.4 to 12.4-fold increase. Both laccases expressed in transgenic P. pastoris or A. thaliana could decolorize crystal violet. These results indicated that L. bicolor laccase gene may be transgenically exploited in fungi or plants for dye decolorization.

Increase of Yeast Survival under Oxidative Stress by the Expression of the Laccase Gene from Coprinellus congregatus

  • Kim, Dong-Sik;Kwak, Eun-Jung;Choi, Hyoung-T.
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.617-621
    • /
    • 2006
  • Coprinellus congregatus secreted a laccase isozyme when the culture was transferred to an acidic liquid medium (pH 4.1). The laccase cDNA gene (clac2) was used as a probe for cloning of the genomic laccase gene (lac2) including the promoter (Plac2). The open reading frame (ORF) of lac2 had 526 deduced amino acids and four conserved copper binding domains as other fungal laccases. Recombinant plasmid (pRSlac2p-cDNA) of lac2 cDNA with its own promoter was transformed in Saccharomyces cerevisiae. Expression of the transformed lac2 gene was induced by oxidative stress ($H_2O_2$) in yeast and the survival rate of the transformed yeast strain was greatly increased when compared with that of the control strain transformed with pRS316 yeast vector.

Environmental Factors and Bioremediation of Xenobiotics Using White Rot Fungi

  • Magan, Naresh;Fragoeiro, Silvia;Bastos, Catarina
    • Mycobiology
    • /
    • v.38 no.4
    • /
    • pp.238-248
    • /
    • 2010
  • This review provides background information on the importance of bioremediation approaches. It describes the roles of fungi, specifically white rot fungi, and their extracellular enzymes, laccases, ligninases, and peroxidises, in the degradation of xenobiotic compounds such as single and mixtures of pesticides. We discuss the importance of abiotic factors such as water potential, temperature, and pH stress when considering an environmental screening approach, and examples are provided of the differential effect of white rot fungi on the degradation of single and mixtures of pesticides using fungi such as Trametes versicolor and Phanerochaete chrysosporium. We also explore the formulation and delivery of fungal bioremedial inoculants to terrestrial ecosystems as well as the use of spent mushroom compost as an approach. Future areas for research and potential exploitation of new techniques are also considered.

Cloning and expression of new laccase gene (soncotA) from Bacillus sonorensis KCTC13918 in E. coli (Bacillus sonorensis KCTC13918로부터 새로운 laccase유전자 (soncotA)의 클로닝과 대장균에서의 발현)

  • Choi, Shin-Geon;Yoon, Hyeonjong
    • Journal of Industrial Technology
    • /
    • v.37 no.1
    • /
    • pp.16-20
    • /
    • 2017
  • A new putative laccase gene (soncotA) which show 78% homology with that from Bacillus licheniformis (liccotA) was isolated from draft genome sequence of Bacillus sonorensis KCTC 13918. A 1,545 bp of PCR product corresponding 514 amino acids was cloned into NdeI-NotI site of pET21c and expressed as soluble form in E. coli. About 59 kDa size of recombinant laccase was purified into homogenity by Ni-NTA column and laccase activity was confirmed by zymography. The enzymatic properties of recombinant laccase were characterized. The specific activity of B. sonorensis laccase was 0.033 fold lower than that of Bacillus licheniformis laccase. The finding of new laccase gene broadened the enzymatic diversity of Bacillus species laccases.

Degradation of Pentachlorophenol by Lignin Degrading Fungi and Their Laccases

  • Cho, Nam-Seok;Cho, Hee-Yeon;Pham, Hop Thi Bich
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.5 s.133
    • /
    • pp.76-85
    • /
    • 2005
  • The degradation of pentachlorophenol (PCP) by lignin degrading fungi was performed. Several fungi, Abortiporus biennis, Cerrena unicolor and Trametes versicolor, were tested to evaluate the inhibitory effect of PCP on their growth. At the extremal concentration of PCP $(500\;{\mu}M)$, only C. unicolor showed relatively fast growth (60% within 14 days) in the comparison to the control culture. In the case of A. biennis and C. unicolor, when initial PCP concentration was $50\;{\mu}M$, about 88.2% and 79.5% of PCP degradation were achieved within 3 days, respectively. When 2,5-xylidine (0.2 mM) was added to the C. unicolor culture, as high as 98% of PCP degradation was achieved within just an hour after its addition. A. biennis removed 44% of PCP at the same condition. PCP was completely disappeared when laccase activities reached to maximum.