• Title/Summary/Keyword: laboratory measurement methods

Search Result 431, Processing Time 0.028 seconds

Haptoglobin Concentration in the Cord Blood of Uninfected Korean Newborns

  • Choi, Seong Jin;Lee, Byoungkook;Ahn, Kwangjin;Uh, Young
    • Perinatology
    • /
    • 제29권4호
    • /
    • pp.165-169
    • /
    • 2018
  • Objective: Highly sensitive haptoglobin measurement should be used in neonates because the haptoglobin concentration in neonates is lower than that of adults. The aim of this study was to establish the reference values of haptoglobin levels in the cord blood of uninfected neonates. Methods: The cord blood of 29 preterm and 51 term babies was collected, and data from the mother and the newborn were recorded. The haptoglobin concentrations of 80 cord blood samples were simultaneously measured by enzyme-linked immunosorbent assay (ELISA; Assaypro, St Charles, MO, USA) and immunoturbidimetry assay (Roche Diagnostics, Basel, Switzerland). C-reactive protein (CRP) was also measured by immunoturbidimetry assay (Roche Diagnostics, Switzerland). Results: Mean values of CRP and ELISA haptoglobin were not significantly different between preterm and term babies. The 2.5 percentile and 97.5 percentile values of ELISA haptoglobin concentration were as follows: 80 neonates, 0.01 mg/dL and 0.59 mg/dL; 29 preterm babies, 0.08 mg/dL and 0.18 mg/dL; and 51 term babies, 0.07 mg/dL and 0.23 mg/dL. There were no differences in ELISA haptoglobin concentration according to maternal underlying diseases, delivery method, usage of antibiotics or steroids before delivery, gestational age, gender of baby, or twin gestation. Conclusion: A highly sensitive haptoglobin method should be used to determine the haptoglobin concentration in Korean newborns because the reference values of cord blood haptoglobin concentration in Korean newborns are less than the lower detection limit for commonly used immunoturbidimetric haptoglobin measurement methods.

Review and Evaluation of Hand-Arm Coordinate Systems for Measuring Vibration Exposure, Biodynamic Responses, and Hand Forces

  • Dong, Ren G.;Sinsel, Erik W.;Welcome, Daniel E.;Warren, Christopher;Xu, Xueyan S.;McDowell, Thomas W.;Wu, John Z.
    • Safety and Health at Work
    • /
    • 제6권3호
    • /
    • pp.159-173
    • /
    • 2015
  • The hand coordinate systems for measuring vibration exposures and biodynamic responses have been standardized, but they are not actually used in many studies. This contradicts the purpose of the standardization. The objectives of this study were to identify the major sources of this problem, and to help define or identify better coordinate systems for the standardization. This study systematically reviewed the principles and definition methods, and evaluated typical hand coordinate systems. This study confirms that, as accelerometers remain the major technology for vibration measurement, it is reasonable to standardize two types of coordinate systems: a tool-based basicentric (BC) system and an anatomically based biodynamic (BD) system. However, these coordinate systems are not well defined in the current standard. Definition of the standard BC system is confusing, and it can be interpreted differently; as a result, it has been inconsistently applied in various standards and studies. The standard hand BD system is defined using the orientation of the third metacarpal bone. It is neither convenient nor defined based on important biological or biodynamic features. This explains why it is rarely used in practice. To resolve these inconsistencies and deficiencies, we proposed a revised method for defining the realistic handle BC system and an alternative method for defining the hand BD system. A fingertip-based BD system for measuring the principal grip force is also proposed based on an important feature of the grip force confirmed in this study.

Relationship Between the Number of Hip Abduction Performance With Contralateral Adduction in Side-lying and the Lateral Pelvic Shift Distance During One-leg Lifting

  • Do-eun Lee;Jun-hee Kim;Gyeong-tae Gwak;Young-soo Weon;Oh-yun Kwon
    • 한국전문물리치료학회지
    • /
    • 제30권2호
    • /
    • pp.152-159
    • /
    • 2023
  • Background: The gluteus medius (Gmed) plays a critical role in maintaining frontal plane stability of the pelvis during functional activities, such as one-leg lifting. Side-lying hip abduction (SHA) has been used as a dynamic test to evaluate Gmed function. However, the abduction force of the lower leg against the floor is not controlled during SHA. Therefore, hip abduction performance with contralateral adduction in the side-lying position (HAPCA) can be proposed as an alternative method to assess performance of hip abduction. If the number of HAPCA is related to the lateral pelvic shift distance, a new quantitative measurement for hip abductor function may be presented. Objects: This study aimed to investigate the relationship between the number of successful HAPCA and the lateral pelvic shift distance during one-leg lifting. Methods: Thirty healthy participants were recruited, and lateral pelvic shift distance was measured during one-leg lifting test using two-dimensional analysis. The number of successful HAPCA was counted when participants touched both target bars at the beat of a metronome. Results: There was a negative correlation between the number of HAPCA and lateral pelvic shift distance during one-leg lifting (r = -0.630, p < 0.05). The number of HAPCA accounted for 39.7% of the variance in the lateral pelvic shift distance during one-leg lifting (F = 18.454, p < 0.001). Conclusion: The number of successful HAPCA is significantly correlated with lateral pelvic shift distance during one-leg lifting. This finding suggests that HAPCA can be proposed as a new measurement for hip abductor performance and more research is needed on its relationship with hip abductor strength.

시멘트 공간이 적층 가공으로 제작한 지르코니아 하부구조물의 변연 및 내면 적합도에 미치는 영향 (Effect of cement space on marginal and internal fit of a zirconia core fabricated using by additive manufacturing)

  • 민지원;김세연;김재홍
    • 대한치과기공학회지
    • /
    • 제46권1호
    • /
    • pp.1-7
    • /
    • 2024
  • Purpose: The goal of this study was to determine the clinical acceptability of various cement space settings for the marginal and internal fit of a zirconia core manufactured using additive manufacturing. Methods: The maxillary right incisor served as the master model. After scanning the maxillary right incisor with a dental 3D (three-dimensional) scanner, the stereo lithography file was created using different cement space settings of 40, 120, and 200 ㎛ using computer-aided design software (Dental System 2018; 3Shape). The marginal and internal fit of the 3 groups were determined using the silicon replica technique. Measurement points were divided into the following three categories: margin, axial wall, and incisal. To ensure more accurate measurements, these three measurement points were divided into 8 points. The Shapiro-Wilk, one-way ANOVA, and Tukey's honestly significant difference test (for all tests α=0.05) were the statistical analyses that were included in the study. Results: The CS (cement space)-200 group had better marginal and internal fit than the CS-40 and CS-120 groups, and there were statistically significant differences at the marginal and incisal points, except for the axial wall points. CS-200 group, both marginal and internal fit were within 120 ㎛, which is the clinically acceptable value. Conclusion: This study suggests that a 200 ㎛ cement space setting is ideal for optimal marginal and internal fit of 3D-printed ceramic crowns.

개회로 CO2/H2O 적외선 기체 분석기 보정 인자의 변동성과 장기 플럭스 관측에 미치는 영향 (Variability of Calibration Factors for Open-Path CO2/H2O Infrared Gas Analyzer and Its Effect on Long-Term Flux Measurement)

  • 최태진;윤진일;임종환;박은우;김준
    • 한국농림기상학회지
    • /
    • 제4권2호
    • /
    • pp.103-113
    • /
    • 2002
  • Calibration experiments were executed to document pertinent calibration methods for open-path infrared gas analyzer (OP-2) in field operations and to quantify their performance characteristics in continuous long-term flux measurements. Based on our results, we concluded: (1) flow rate of 2.0 L min$^{-1}$ can be used for calibration instead of the recommended 0.5 L min$^{-1}$ . Such faster flow rate brings the sampled air in the calibration hood at equilibrium within 5 min for $CO_2$ and 10 min for $H_2O$; (2) after reaching equilibrium, two-minute average sampling for related variables per each concentration may be sufficient; (3) use of four concentration is needed to derive the nonlinear calibration equation for water vapor with 1% uncertainty of flux measurement; and (4) the resultant calibration interval for OP-2 for both $CO_2$ and $H_2O$ is approximately one month.

Two-dimensional deformation measurement in the centrifuge model test using particle image velocimetry

  • Li, J.C.;Zhu, B.;Ye, X.W.;Liu, T.W.;Chen, Y.M.
    • Smart Structures and Systems
    • /
    • 제24권6호
    • /
    • pp.793-802
    • /
    • 2019
  • The centrifuge model test is usually used for two-dimensional deformation and instability study of the soil slopes. As a typical loose slope, the municipal solid waste (MSW) landfill is easy to slide with large deformation, under high water levels or large earthquakes. A series of centrifuge model tests of landfill slide induced by rising water level and earthquake were carried out. The particle image velocimetry (PIV), laser displacement transducer (LDT) and marker tracer (MT) methods were used to measure the deformation of the landfill under different centrifugal accelerations, water levels and earthquake magnitudes. The PIV method realized the observation of continuous deformation of the landfill model, and its results were consistent with those by LDT, which had higher precision than the MT method. The deformation of the landfill was mainly vertically downward and increased linearly with the rising centrifugal acceleration. When the water level rose, the horizontal deformation of the landfill developed gradually due to the seepage, and a global slide surface formed when the critical water level was reached. The seismic deformation of the landfill was mainly vertical at a low water level, but significant horizontal deformation occurred under a high water level. The results of the tests and analyses verified the applicability of PIV in the two-dimensional deformation measurement in the centrifuge model tests of the MSW landfill, and provide an important basis for revealing the instability mechanism of landfills under extreme hydraulic and seismic conditions.

도시철도용 무선 급집전 시스템 주변의 전자기장 측정 방법 및 안전성 평가 방법 연구 (EMF Measurement and Safety Assessment Method for Wireless Power Transfer System for Urban Railroad)

  • 김윤명;김준희;주영준
    • 한국전자파학회논문지
    • /
    • 제29권12호
    • /
    • pp.942-952
    • /
    • 2018
  • 국내에서 개발되고 있는 도시철도용 무선 전달 공급 시스템은 60 kHz 자기장을 이용하여 객차에 전력을 공급한다. 무선 전력 전송 시 발생되는 전자기장에 인체가 노출될 때, 전자기장 세기는 인체 안전성 기준을 만족해야 한다. 하지만 도시철도용 무선 급집전 시스템에서 발생하는 전자기장에 대한 측정 방법과 인체 안전성 평가 방법이 아직 확립되지 않았다. 본 논문에서는 도시철도용 무선 급집전 시스템에서 발생되는 전자기장 측정 방법 및 인체 안전성 평가 방법을 제안하였다. 제안된 측정 방법에 따라 무선 급집전 시스템 시험선로에서 발생되는 전자기장을 측정하고, 전자기장 인체 보호기준치와 비교하였다.

Key Strike Forces and Their Relation to High Level of Musculoskeletal Symptoms

  • Levanon, Yafa;Gefen, Amit;Lerman, Yehuda;Portnoy, Sigal;Ratzon, Navah Z.
    • Safety and Health at Work
    • /
    • 제7권4호
    • /
    • pp.347-353
    • /
    • 2016
  • Background: This study aimed to investigate the relation between key strike forces and musculoskeletal symptoms (MSS). Moreover, this study presents a key strike force measurement method to be used in a workplace setting. The correlation between key strike force characteristics and MSS was previously studied, but the measurement methods used either a single-key switch or force platforms applied under the keyboard. Most of the studies were conducted in a laboratory setting. The uniqueness of measurement methods in the current study is their ability to measure forces applied to a specific key in a workplace setting and to provide more information about specific key strike forces during typing. Methods: Twenty-four healthy computer workers were recruited for the study. The demographic questionnaire, and self-reported questionnaires for psychosocial status (General Nordic Questionnaire for Psychological and Social Factors at Work) and for detecting MSS were filled up, which later helped in dividing the participants into two groups (12 participants with pain and 12 without pain). Participants typed a predetermined text that utilized the instrumented keys multiple times. The dynamic forces applied to the keys were recorded and collected, using four thin and flexible force sensors attached to the preselected keys according to their location. Results: The results demonstrated that participants with high levels of MSS, specifically in the back and neck, in the last year exerted significantly higher key strike forces than those with lower levels of symptoms (p < 0.005). Conclusion: The key strike force exerted while typing on a keyboard may be a risk factor for MSS, and should therefore be considered in ergonomic evaluations and interventional programs.

Passive Ranging Based on Planar Homography in a Monocular Vision System

  • Wu, Xin-mei;Guan, Fang-li;Xu, Ai-jun
    • Journal of Information Processing Systems
    • /
    • 제16권1호
    • /
    • pp.155-170
    • /
    • 2020
  • Passive ranging is a critical part of machine vision measurement. Most of passive ranging methods based on machine vision use binocular technology which need strict hardware conditions and lack of universality. To measure the distance of an object placed on horizontal plane, we present a passive ranging method based on monocular vision system by smartphone. Experimental results show that given the same abscissas, the ordinatesis of the image points linearly related to their actual imaging angles. According to this principle, we first establish a depth extraction model by assuming a linear function and substituting the actual imaging angles and ordinates of the special conjugate points into the linear function. The vertical distance of the target object to the optical axis is then calculated according to imaging principle of camera, and the passive ranging can be derived by depth and vertical distance to the optical axis of target object. Experimental results show that ranging by this method has a higher accuracy compare with others based on binocular vision system. The mean relative error of the depth measurement is 0.937% when the distance is within 3 m. When it is 3-10 m, the mean relative error is 1.71%. Compared with other methods based on monocular vision system, the method does not need to calibrate before ranging and avoids the error caused by data fitting.

Development and Validation of a Vision-Based Needling Training System for Acupuncture on a Phantom Model

  • Trong Hieu Luu;Hoang-Long Cao;Duy Duc Pham;Le Trung Chanh Tran;Tom Verstraten
    • Journal of Acupuncture Research
    • /
    • 제40권1호
    • /
    • pp.44-52
    • /
    • 2023
  • Background: Previous studies have investigated technology-aided needling training systems for acupuncture on phantom models using various measurement techniques. In this study, we developed and validated a vision-based needling training system (noncontact measurement) and compared its training effectiveness with that of the traditional training method. Methods: Needle displacements during manipulation were analyzed using OpenCV to derive three parameters, i.e., needle insertion speed, needle insertion angle (needle tip direction), and needle insertion length. The system was validated in a laboratory setting and a needling training course. The performances of the novices (students) before and after training were compared with the experts. The technology-aided training method was also compared with the traditional training method. Results: Before the training, a significant difference in needle insertion speed was found between experts and novices. After the training, the novices approached the speed of the experts. Both training methods could improve the insertion speed of the novices after 10 training sessions. However, the technology-aided training group already showed improvement after five training sessions. Students and teachers showed positive attitudes toward the system. Conclusion: The results suggest that the technology-aided method using computer vision has similar training effectiveness to the traditional one and can potentially be used to speed up needling training.