• Title/Summary/Keyword: laboratory lessons

Search Result 48, Processing Time 0.027 seconds

An Integrated On-Line Diagnostic System for the NORS Process of Maiden Reactor Project: The Design Concept and Lessons Learned

  • Kim, Inn-Seock
    • Nuclear Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.261-273
    • /
    • 2000
  • During an extensive review made as part of the Integrated Diagnosis System project of the Maiden Reactor Project, MOAS (Maryland Operator Advisory System) was identified as one of the most thorough systems developed thus far. MOAS is an integrated on-line diagnosis system that encompasses diverse functional aspects that are required for an effective process disturbance management: (1) intelligent process monitoring and alarming, (2) on-line sensor data validation and sensor failure diagnosis, (3) on-line hardware (besides sensors) failure diagnosis, and (4) real-time corrective measure synthesis. The MOAS methodology was used at the Maiden Man-Machine Laboratory HAMMLAB of the OECD Maiden Reactor Project. The performance of MOAS, developed in G2 real-time expert system shell for the high-pressure preheaters of the NORS process in the HAMMLAB, was tested against a variety of transient scenarios, including failures of the control valves and sensors, and tube leakage of the preheaters. These tests showed that MOAS successfully carried out its intended functions, i.e., quickly recognizing an occurring disturbance, correctly diagnosing its cause, and presenting advice on its control to the operator. The lessons learned and insights gained during the implementation and performance tests also are discussed.

  • PDF

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

The Impact of Reading Framework on College Students' Reflective Thinking in Argumentation-Based General Chemistry Laboratory (논의기반 일반화학실험에서 읽기틀이 대학생의 반성적 사고에 미치는 영향)

  • Nam, Jeonghee;Lee, Dongwon;Park, Seongho
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.6
    • /
    • pp.813-820
    • /
    • 2013
  • The purpose of this study was to examine the impact of the reading framework on college students' reflective thinking in argumentation-based general chemistry laboratory. A total of 17 first grade college students taking general chemistry laboratory participated in this study, with 7 in the treatment group and the other 10 in the comparative group. For two semesters, a total of 10 argumentation-based general chemistry laboratory programs were applied. The result was shown that the lessons using the reading framework were effective in enhancing the students' reflective thinking. As the study progressed, the treatment group showed more changes toward the high level of reflective thinking than those of the comparative group.

Preliminary PINC(Program for the Inspection of Nickel Alloy Components) RRT(Round Robin Test) - Pressurizer Dissimilar Metal Weld -

  • Kim, Kyung-Cho;Kang, Sung-Sik;Shin, Ho-Sang;Chung, Ku-Kab;Song, Myung-Ho;Chung, Hae-Dong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.3
    • /
    • pp.248-255
    • /
    • 2009
  • After several damages by PWSCC were found in the world, USNRC and PNNL(Pacific Northwest National Laboratory) started the research on PWSCC under the project name of PINC. The aim of the project was 1) to fabricate representative NDE mock-ups with flaws to simulate PWSCCs, 2) to identify and quantitatively assess NDE methods for accurately detecting, sizing and characterizing PWSCCs, 3) to document the range of locations and morphologies of PWSCCs and 4) to incorporate results with other results of ongoing PWSCC research programs, as appropriate. Korea nuclear industries have also been participating in the project. Thermally and mechanically cracked-four mockups were prepared and phased array and manual ultrasonic testing(UT) techniques were applied. The results and lessons learned from the preliminary RRT are summarized as follows: 1) Korea RRT teams performed the RRT successfully. 2) Crack detection probability of the participating organizations was an average 87%, 80% and 80% respectively. 3) RMS error of the crack sizing showed comparatively good results. 4) The lessons learned may be helpful to perform the PINC RRT and PSI /ISI in Korea in the future.

Current Status of Antarctic Environments and Resources

  • Park, Paul-Kilho;Sutton, Holly J.;Kim, Su-Am
    • Journal of the korean society of oceanography
    • /
    • v.33 no.3
    • /
    • pp.123-135
    • /
    • 1998
  • Cooperative scientific research in Antarctic has been successful since the International Geophysical Year 1957/1958. Presently, 43 nations have joined the Antarctic Treaty as consultative parties or acceding states, and other treaties and agreements have evolved to conserve the integrity and to manage the resources of the Antarctic ecosystem. Although yet to be designated, tourism areas in Antarctica are under consideration. Due to its remoteness and vast magnitude, Antarctica's science is slowly emerging. Satellite technology has enabled observation of the progression of the ozone hole above Antarctica. Mineral exploitation has yet to take place, as has the transport of Antarctic icebergs to some arid nations. On the other hand, both seal and whale exploitations have occurred, devastating these populations. The lessons learned from past human greed are used to design krill and squid fisheries, though the life histories of these organisms are yet to be adequately understood. An ecosystem approach to managing Antarctic resource exploitation is essential. Procuring the needed logistics to do so is daunting, requiring the highest degree of international cooperation and educational outreach to nurture the needed effective scientific and engineering talent, both natural and social.

  • PDF

X-RAY STUDIES OF THE INTRACLUSTER MEDIUM IN CLUSTERS OF GALAXIES - CHARACTERIZING GALAXY CLUSTERS AS GIANT LABORATORIES

  • BOHRINGER HANS
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.361-369
    • /
    • 2004
  • Galaxy clusters as the densest and most prominent regions within the large-scale structure can be used as well characterizable laboratories to study astrophysical processes on the largest scales. X-ray observations provide currently the best way to determine the physical properties of galaxy clusters and the environmental parameters that describe them as laboratories. We illustrate this use of galaxy clusters and the precision of our understanding of them as laboratory environments with several examples. Their application to determine the matter composition of the Universe shows good agreement with results from other methods and is therefore a good test of our understanding. We test the reliability of mass measurements and illustrate the use of X-ray diagnostics to study the dynamical state of clusters. We discuss further studies on turbulence in the cluster ICM, the interaction of central AGN with the radiatively cooling plasma in cluster cooling cores and the lessons learned from the ICM enrichment by heavy elements.

Rock Mechanics Advances for Underground Construction in Civil Engineering and Mining

  • Kaiser, Peter K.;Kim, Bo-Hyun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2008.10a
    • /
    • pp.3-16
    • /
    • 2008
  • The underground construction and mining are facing many geomechanics challenges stemming from, geological complexities and stress-driven rock mass degradation processes. Brittle failing rock at depth poses unique problems as stress-driven failure processes often dominate the tunnel behaviour. Such failure processes can lead to shallow unravelling or strainbursting modes of instability that cause difficult conditions for tunnel contractors. This keynote address focuses on the challenge of anticipating the actual behaviour of brittle rocks in laboratory testing, for empirical rock mass strength estimation, and by back-analysis of field observations. This paper summarizes lessons learned during the construction of deep Alpine tunnels and highlights implications that are of practical importance with respect to constructability. It builds on a recent presentation made at the $1^{st}$ Southern Hemisphere International Rock Mechanics Symposium held in Perth, Australia, in September this year, and includes results from recent developments.

  • PDF

A experimental model of combining exploratory learning and geometry problem solving with GSP (기하문제해결에서의 GSP를 활용한 탐구학습 신장)

  • Jun, Young-Cook;Joo, Mi
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.605-620
    • /
    • 1998
  • This paper suggested a geometry learning model which relates an exploratory learning model with GSP applications, Such a model adopts GSP's capability of visualizing dynamic geometric figures and exploratory learning method's advantages of discovering properties and relations of geometric problem proving and concepts associated with geometric inferencing of students. The research was conducted for 3 middle school students by applying the proposed model for 6times at computer laboratory. The overall procedure was videotaped so that the collected data was later analyzed by qualitative methodology. The analysis indicated that the students with less than van Hiele 4 level took advantages of adoption our proposed model to gain concrete understandings of geometric principles and concepts with GSP. One of the lessons learned from this study suggested that the roles of students and a teacher who want to employ the proposed model need to change their roles respectively.

  • PDF

Site Investigations for Design Parameter Determination (설계정수 산정을 위한 지반조사)

  • Cho, Wan-Jei
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.785-789
    • /
    • 2009
  • It is essential to carry out appropriate site investigations for the accurate prediction of the geo-structure. However, the importance of the site investigation is often overlooked due to the time and expense constraints. In this study, several cases of geotechnical design perfromed in United States are introduced with the lessons about how the site investigations are planned, performed and applied for the actual design parameter determination. Based on the case studies presented herein, experienced geotechnical engineer should participate in site investigations from the planning stage through the final boring logs and utilize all the laboratory and field tests to have consistent input parameters for the soil constitutive models. Furthermore, it is also desired to have close relationship between construction industry and the academia to compensate their needs.

  • PDF

Lessons from Korean Innovation Model for ASEAN Countries Towards a Knowledge Economy

  • Ocon, Joey D.;Phihusut, Doungkamon;del Rosario, Julie Anne D.;Tuan, Trinh Ngoc;Lee, Jaeyoung
    • STI Policy Review
    • /
    • v.4 no.2
    • /
    • pp.19-40
    • /
    • 2013
  • The Association of Southeast Asian Nations (ASEAN) achieved relatively rapid economic growth over the past decade. Sustainable growth among member states, however, is put into question due to macroeconomic challenges, political risk, and vulnerability to external shocks. Developed countries, in contrast, have turned into less labor-intensive technologies to further expand their economies. In this paper, we review the science, technology, and innovation (STI) policies and statuses of the scientific and technological capabilities of the ASEAN member countries. Empirical results based on STI indicators (R&D spending, publications, patents, and knowledge economy indices) reveal considerable variation between the science and technology (S&T) competence and effectiveness of STI policies of ASEAN members. We have categorized nations into clusters according their situations in their S&T productivity. Under the Korean Innovation Model, Cambodia, Laos, Myanmar, and Brunei are classified as being in the institutional-building stage, while Malaysia, Thailand, Indonesia, the Philippines, and Vietnam in the catch up stage, and Singapore in the post-catch up stage. Finally, policy prescriptions on how to enhance the S&T capabilities of the developing ASEAN countries, based on the South Korea development experience, are presented.